User Manual

M3000® Control System
Control System
MSC (Moog Servo Controller)
Control Module
Copyright

© 2004 Moog GmbH
Hanns-Klemm-Strasse 28
71034 Böblingen (Germany)
Telephone: +49 7031 622-0
Fax: +49 7031 622-100
E-Mail: Info@moog.de
M3000-Support@moog.de
Internet: http://www.moog.de
http://www.moog.com/M3000
http://www.moog.com/MSC
http://www.moog.com/QAIO
http://www.moog.com/QDIO
http://www.moog.com/QCAN
http://www.moog.com/MACS

All rights reserved.
Neither this manual nor parts of it may be reproduced in any form (print, photocopy, microfilm, or any other process) or processed, duplicated, or distributed through the use of electronic systems without Moog's written approval.
Offenders will be held liable for the payment of damages.

Subject to changes without prior notice.

All M3000® modules comply with the standards specified in their relevant declaration of conformity.
CE labeling of the M3000® modules is based on proper installation of the control system with proven electromagnetic compatibility (EMC).
Table of Contents

List of Tables ... vi
List of Figures ... vii

1 General Information ... 1
 1.1 About this Manual ... 1
 1.1.1 Reservation of Changes and Validity ... 1
 1.1.2 Exclusion of Liability ... 1
 1.1.3 Completeness .. 1
 1.1.4 Place of Storage ... 1
 1.2 Selection and Qualification of Personnel ... 2
 1.3 Proper Use ... 2
 1.3.1 Safety Related Systems .. 2
 1.4 Warranty and Liability ... 3
 1.5 Inspection of Delivery .. 3
 1.6 Environmental Protection .. 4
 1.6.1 Emissions .. 4
 1.6.2 Disposal ... 4
 1.7 Standards .. 4
 1.7.1 CE Labeling of M3000® Modules ... 4
 1.7.2 IEC 61131-2 ... 4
 1.7.3 Electromagnetic Compatibility (EMC) .. 4
 1.8 Trademarks .. 5
 1.9 Software Copyrights .. 5

2 Safety Instructions .. 6
 2.1 Typographical Conventions .. 6
 2.2 Safety Instructions .. 6
 2.2.1 Safety Related Systems .. 6
 2.2.2 Environmental Conditions ... 7
 2.2.3 ESD ... 7
 2.2.4 Project Planning and Installation .. 8
 2.2.5 Update Rate of E-Bus Messages ... 9
 2.2.6 Shutdown and Service .. 10
 2.2.7 Transportation and Storage .. 11
 2.2.8 Communication Between MSC and MACS .. 11
 2.2.9 License Key of the MSC ... 12
 2.2.10 Reset Button of the MSC ... 12
 2.2.11 Switching Back on or Resetting the MSC ... 13
 2.2.12 ‘Outputs Enabled’ Output of the MSC .. 13
Table of Contents

3 Short M3000® System Overview ... 14
 3.1 M3000® System Architecture .. 15
 3.2 M3000® Starter Kit ... 17
 3.3 M3000® Modules ... 18
 3.3.1 MSC ... 18
 3.3.2 Q-Modules ... 19
 3.3.3 R-Modules (Remote Modules) .. 20
 3.3.4 Identification .. 22
 3.4 License Key ... 23
 3.5 Application Programs ... 24
 3.6 MACS Development Environment ... 24
 3.6.1 MACS HMI Visualization Package ... 25

4 Environmental Conditions ... 26
 4.1 Requirements of IEC 61131-2 .. 26
 4.2 Use in Special Environments .. 27

5 Mechanical Structure .. 28
 5.1 DIN Rail Modules .. 28
 5.1.1 Views of the Module ... 28
 5.1.2 Dimensions ... 29
 5.1.3 Arrangement on DIN Top-Hat Rails .. 30
 5.1.4 Mounting and Removing ... 32
 5.1.2 Dimensions ... 29
 5.1.3 Arrangement on DIN Top-Hat Rails .. 30
 5.1.4 Mounting and Removing ... 32

6 Project Planning and Installation ... 36
 6.1 Grounding Concept .. 37
 6.1.1 Front Panel Connectors' Signal Grounding .. 37
 6.2 Power Supply ... 38
 6.2.1 Power Supply Characteristics ... 38
 6.2.2 Power Consumption by DIN Rail Modules ... 39
 6.2.3 Connecting the Power Supply ... 39
 6.2.4 Connecting Sensors ... 42
 6.3 Connecting Signal Cables ... 45
 6.3.1 Plug-In Terminal Strips .. 45

7 Networking M3000® Modules ... 46
 7.1 Ethernet ... 46
 7.1.1 Peer-to-Peer Connections .. 46
 7.1.2 Networking of More Than 2 Network Stations ... 46
 7.1.3 Ethernet Interface Cables .. 47
 7.2 Serial TIA/EIA Interface Cables .. 47
 7.2.1 TIA/EIA 232 Interface Cables .. 48
 7.2.2 TIA/EIA 422 Interface Cables .. 49
 7.2.3 TIA/EIA 485 Interface Cables .. 49
 7.3 CAN Bus and CANopen ... 50
 7.3.1 CAN Bus ... 50
 7.3.2 CAN Bus Characteristics .. 50
 7.3.3 CANopen .. 51
 7.3.4 M3000® Modules with CAN Bus Interfaces .. 51
 7.3.5 CAN Bus Networks ... 52
 7.3.6 CAN Bus Interface Cable .. 54
Table of Contents

10 MSC (Moog Servo Controller) ... 67

10.1 Performance Characteristics .. 67

10.1.1 Interfaces .. 67

10.1.2 I/Os (Inputs/Outputs) .. 68

10.1.3 Safety Functions ... 68

10.2 General Specifications .. 68

10.2.1 Dimensions ... 69

10.2.2 Environmental Conditions .. 69

10.3 Block Diagram .. 71

10.4 View of the Module and Terminal Assignment .. 72

10.4.1 Terminal Assignment ... 73

10.4.2 LEDs .. 77

10.5 Programming and Configuration ... 80

10.5.1 Communication Between MSC and MACS ... 80

10.6 License Key ... 81

10.6.1 Run-Time License and Accessible Libraries .. 82

10.6.2 CANopen Node-ID and IP Address ... 82

10.6.3 Mounting and Removing .. 82

10.7 Reset Button .. 84

10.8 Power Supply .. 85

10.8.1 Behavior at Switching on and Switching off ... 85

10.8.2 Low Voltage Detection .. 87

10.9 Digital I/Os ... 91

10.9.1 Display of the Operational State ... 91

10.9.2 Power Supply ... 92

10.9.3 Digital Outputs .. 93

10.9.4 Digital Inputs .. 96

10.10 Analog Outputs .. 99

10.10.1 Basic Wiring Diagram ... 99

10.10.2 Specifications .. 99

10.11 Reference Voltage Output ... 101

8 Shutdown and Service .. 64

8.1 Shutdown .. 64

8.2 Service ... 65

8.2.1 Maintenance/Servicing ... 65

8.2.2 Repair .. 65

9 Transportation and Storage .. 66

9.1 Environmental Conditions .. 66

7.4 E-Bus .. 55

7.4.1 E-Bus Interface .. 55

7.4.2 E-Bus Communication ... 56

7.4.3 MSC as E-Bus Master .. 56

7.5 Networking DIN Rail Modules ... 59

7.5.1 CAN and E-Bus Interfaces .. 59

7.5.2 E-Bus Groups ... 60

7.5.3 LocalCAN Bus Groups .. 61

7.5.4 WideCAN Bus Groups ... 62
10.12 Analog Inputs ... 102
 10.12.1 Basic Wiring Diagram .. 102
 10.12.2 Specifications .. 102
 10.12.3 Connecting Analog Sensors ... 104
10.13 Digital Sensor Interfaces .. 108
 10.13.1 Wire Fault Monitoring ... 108
 10.13.2 Connecting SSI Sensors ... 109
 10.13.3 Connecting Incremental Sensors ... 111
10.14 E-Bus Interface .. 112
 10.14.1 Configuration of the E-Bus Interface .. 112
10.15 CAN Bus Interfaces ... 113
 10.15.1 CAN Bus Termination Resistor .. 114
 10.15.2 Setting the CANopen Node-ID .. 114
 10.15.3 Setting the CAN Bus Baud Rate .. 114
10.16 Serial Interfaces .. 115
10.17 Safety Functions .. 115
 10.17.1 Watchdog .. 115
 10.17.2 'Outputs Enabled' Output (LED «OutEN») .. 116
 10.17.3 Stopping the Application Program ... 116
10.18 Nameplate .. 117
11 Product Range .. 118
 11.1 M3000® Starter Kit ... 118
 11.2 M3000® Modules ... 118
 11.2.1 MSC (Moog Servo Controller) .. 118
 11.2.2 Q-Modules .. 119
 11.2.3 R-Modules (Remote Modules) .. 120
 11.3 Power Supply for M3000® Modules ... 121
 11.4 License Keys .. 121
 11.5 Software .. 122
 11.5.1 MACS (Moog Axis Control Software) ... 122
 11.5.2 Software for R-Modules .. 122
 11.6 Interface Cables ... 123
 11.7 CAN Bus Accessories ... 123
 11.8 Plug-In Terminal Strips ... 124
 11.8.1 Number of Required Plug-In Terminal Strips ... 124
 11.9 Training Programs ... 125
12 Appendix ... 126
 12.1 Typographical Conventions ... 126
 12.2 Abbreviations .. 127
 12.3 Quoted Standards .. 129
 12.3.1 CiA DS .. 129
 12.3.2 DIN and DIN EN ... 129
 12.3.3 IEC ... 130
 12.3.4 ISO/DIS .. 130
 12.3.5 TIA/EIA ... 130
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Index</td>
<td>131</td>
</tr>
<tr>
<td>A…C</td>
<td>131</td>
</tr>
<tr>
<td>D…G</td>
<td>132</td>
</tr>
<tr>
<td>I…L</td>
<td>133</td>
</tr>
<tr>
<td>L…N</td>
<td>134</td>
</tr>
<tr>
<td>O…R</td>
<td>135</td>
</tr>
<tr>
<td>R…S</td>
<td>136</td>
</tr>
<tr>
<td>T…Z</td>
<td>137</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Dimensions of DIN Rail Modules .. 29
Table 2: Power Consumption by DIN Rail Modules .. 39
Table 3: Power Supply Conditions of the Module's Internal Electronics and the Sensors 40
Table 4: M3000® Modules with CAN Bus Interfaces .. 51
Table 5: Maximum Cable Lengths in CAN Bus Networks (Depending on the Transmission Rate) ... 54
Table 6: Maximum Permissible Stub Cable Lengths in CAN Bus Networks 54
Table 7: Suitable Cables for CAN Bus Interface Cables ... 55
Table 8: Permissible Masters and Slaves in E-Bus Groups ... 56
Table 9: Update Rate of E-Bus Messages ... 57
Table 10: Update Order for Inputs and Outputs of QDIO and QAIO 16/4 58
Table 11: DIN Rail Modules with CAN and E-Bus Interfaces ... 59
Table 12: Terminal Assignment of MSC's Connectors .. 73
Table 13: LEDs of the MSC ... 77
Table 14: LEDs for Displaying Elementary Operational States and Errors after Switching on or Resetting the MSC ... 79
Table 15: Possible States of the Internal Module Control of the MSC .. 88
Table 16: U/I Working Ranges of MSC's Digital Outputs (Current Consuming) 98
Table 17: Output Ranges of MSC's Analog Outputs .. 100
Table 18: Rise Time T_{10/90} of MSC's Analog Outputs ... 100
Table 19: Permissible Measurement Range of MSC's analog inputs ... 103
Table 20: Designations of Incremental Sensor Terminals (MSC and Incremental Sensors from Various Manufacturers) ... 112
Table 21: Product Range – M3000® Starter Kit ... 118
Table 22: Product Range – MSC .. 118
Table 23: Product Range – Q-Modules .. 119
Table 24: Product Range – R-Modules (Remote Modules) .. 120
Table 25: Product Range – Power Supply for M3000® Modules ... 121
Table 26: Product Range – License Keys ... 121
Table 27: Features Provided by the Various License Keys ... 121
Table 28: Product Range – Software – MACS .. 122
Table 29: Product Range – Software for R-Modules ... 122
Table 30: Product Range – Interface Cables ... 123
Table 31: Product Range – CAN Bus Accessories .. 123
Table 32: Product Range – Plug-In Terminal Strips ... 124
Table 33: Number of Plug-In Terminal Strips Required for Various DIN Rail Modules 124
Table 34: Product Range – Training Programs ... 125
Table 35: Abbreviations .. 127
List of Figures

Figure 1: M3000® System Architecture (Example) ... 16
Figure 2: M3000® Starter Kit 17
Figure 3: MSC Control Module 18
Figure 4: QDIO ... 19
Figure 5: QAIO 16/4.. 19
Figure 6: QCAN CAN Extension Module 20
Figure 7: RDIO 16/16-0,5 Remote I/O Module 21
Figure 8: RTEMP 8-CAN Temperature Control Module ... 21
Figure 9: RDISP 22 Display and Operating Terminal 22
Figure 10: License Key ... 23
Figure 11: Front View of DIN Rail Modules 28
Figure 12: Side View of DIN Rail Modules 28
Figure 13: Dimensions of DIN Rail Modules 29
Figure 14: Arrangement of DIN Rail Modules on a Vertical Mounting Plate ... 30
Figure 15: Arrangement of DIN Rail Modules between Cable Conduits ... 31
Figure 16: Using a Shielding Bar when Connecting a Signal Cable to the MSC ... 31
Figure 17: Unlocking a DIN Rail Module 32
Figure 18: Placing a DIN Rail Module onto a DIN Top-Hat Rail 33
Figure 19: Sliding a DIN Rail Module on a DIN Top-Hat Rail 33
Figure 20: DIN Rail Modules Joined Without Gaps on a DIN Top-Hat Rail .. 33
Figure 21: Fixing and Locking a DIN Rail Module 34
Figure 22: Unlocking a DIN Rail Module 35
Figure 23: Pulling apart DIN Rail Modules 35
Figure 24: Lifting off a DIN Rail Module from the DIN Top-Hat Rail ... 35
Figure 25: Grounding Concept 37
Figure 26: Correct Connection of DIN Rail Modules to Several Power Supplies ... 41
Figure 27: Correct Connection of DIN Rail Modules to a Single Power Supply ... 41
Figure 28: Correct Power Supply Connection of Sensors via a QDIO ... 43
Figure 29: Wrong Power Supply Connection of Sensors via a QDIO ... 44
Figure 30: Ethernet Network with exactly 2 Network Stations .. 46
Figure 31: Ethernet Network with more than 2 Network Stations ... 46
Figure 32: 10BaseT Cable with Crossed Twisted Pair Wires ... 47
Figure 33: 10BaseT Cable with Non-Crossed Twisted Pair Wires ... 47
Figure 34: TIA/EIA 232 Null Modem Cable (Programming Cable) ... 48
Figure 35: TIA/EIA 232 Interface Cable with 1:1 Connection ... 48
Figure 36: TIA/EIA 422 Null Modem Cable 49
Figure 37: TIA/EIA 422 Interface Cable with 1:1 Connection ... 49
List of Figures

Figure 38: TIA/EIA 485 Interface Cable with 1:1 Connection ... 49
Figure 39: Linear Structure of the CAN Bus .. 53
Figure 40: CAN Bus Interface Cable ... 54
Figure 41: E-Bus Group (MSC as E-Bus Master) .. 61
Figure 42: E-Bus Group (RDIO as E-Bus Master) .. 61
Figure 43: LocalCAN Bus Group (MSCs and RTEMPs as CAN Bus Network Stations) 62
Figure 44: WideCAN Bus Group (MSCs and R-Modules as CAN Bus Network Stations) 63
Figure 45: Repair Seal ... 65
Figure 46: Dimensions of the MSC ... 69
Figure 47: Block Diagram of the MSC .. 71
Figure 48: Front View of the MSC .. 72
Figure 49: Front Panel of the MSC ... 72
Figure 50: License Key of the MSC with Attachment Screws ... 82
Figure 51: States of the MSC when the Input Voltage U Fails ... 88
Figure 52: States of the MSC During Long Duration Low Voltage Conditions .. 89
Figure 53: States of the MSC During Short Duration Low Voltage Conditions 90
Figure 54: Basic Wiring Diagram of a Digital Open Emitter/Collector Output of the MSC 93
Figure 55: Typical Output Current I Limiting of MSC’s Digital Outputs verses the Temperature T of the Transistor .. 94
Figure 56: Basic Wiring Diagram of a Digital Input of the MSC (Current Consuming) 96
Figure 57: U/I Working Ranges of MSC’s Digital Outputs (Current Consuming) 98
Figure 58: Basic Wiring Diagram of an Analog Output Aox of the MSC .. 99
Figure 59: Basic Wiring Diagram of the Analog Inputs Ai1…Ai8 of the MSC ... 102
Figure 60: Shielding the Signal Cable when Connecting an Analog Sensor to the MSC 104
Figure 61: Connecting an Isolated Analog Sensor to the MSC (Voltage Signal) 105
Figure 62: Connecting an Isolated Analog Sensor to the MSC (Current Signal) 105
Figure 63: Connecting a Non-Isolated Analog Sensor (Voltage Signal) with its Own Auxiliary Energy Connection to the MSC ... 105
Figure 64: Connecting a Non-Isolated Analog Sensor (Current Signal) with its Own Auxiliary Energy Connection to the MSC ... 106
Figure 65: Connecting a Non-Isolated Analog Sensor (Voltage Signal) with the Same Auxiliary Energy Connection as the MSC ... 106
Figure 66: Connecting a Non-Isolated Analog Sensor (Current Signal) with the Same Auxiliary Energy Connection as the MSC ... 106
Figure 67: Connecting a Non-Isolated Two Wire Analog Sensor (Voltage Signal) with the Same Auxiliary Energy Connection as the MSC ... 107
Figure 68: Connecting a Non-Isolated Two Wire Analog Sensor (Current Signal) with the Same Auxiliary Energy Connection as the MSC ... 107
Figure 69: Connecting a Potentiometer to the MSC Using the MSC’s Internal Reference Voltage 107
Figure 70: Connecting an Analog 4-Wire Sensor to the MSC Using the MSC’s Internal Reference Voltage ... 108
Figure 71: Connection Diagram of the MSC in Master Mode .. 109
Figure 72: Connection Diagram of the MSC in Slave Mode ... 110
Figure 73: Signals Between the MSC and a 16 Bit SSI Sensor (Example) .. 110
Figure 74: Connection Diagram of the MSC with an Incremental Sensor ... 111
Figure 75: Incremental Sensor Signals A and B with Reversal Point and Speed Change 111
Figure 76: CAN Bus Interfaces of the MSC .. 113
Figure 77: Position of the Nameplate on the MSC ... 117
1 General Information

1.1 About this Manual

This manual is valid only for the M3000® control system and M3000® modules. It contains most important instructions that must be observed in order to operate the M3000® control system and M3000® modules in a safe manner.

Every person responsible for machinery planning, mounting, and operation must read, understand, and follow all points covered in this manual. This applies especially to the safety instructions. Following the safety instructions helps to avoid accidents, faults, and material damage!

The following items must be observed as fundamental elements of safety when using the M3000® control system and M3000® modules:

- All safety instructions contained in this manual
- All safety instructions contained in the documentation of the M3000® modules
- All safety instructions contained in the product related hardware and software documentation required for the relevant application
- All relevant nationally and internationally applicable safety and accident prevention regulations and standards

1.1.1 Reservation of Changes and Validity

The information contained in this manual is valid at the time of this version's release. See footer for version number and release date of this manual. Moog reserves the right to make changes to this manual at any time without specified reasons.

1.1.2 Exclusion of Liability

This manual was prepared with great care and the contents reflect the authors' best knowledge. However, the possibility of error remains and improvements are possible. Please feel free to submit any comments regarding errors or incomplete information to Moog.

Moog does not offer any guarantee that the contents conform to applicable legal regulations nor does Moog accept any liability for incorrect or incomplete information and the consequences thereof.

1.1.3 Completeness

This manual is complete only when used in conjunction with the product related hardware and software documentation required for the relevant application.

1.1.4 Place of Storage

This manual and all other associated documentation for hardware and software must always be kept in a location where they will be readily accessible and close to the M3000® control system and M3000® modules or the equipment in which they are installed.
1.2 Selection and Qualification of Personnel

Qualified Users

Only qualified users may work with and on the M3000® control system or M3000® modules. Qualified users are properly trained experts with the required knowledge and experience. In particular, these experts must have the authorization to bring into operation, ground, and label devices, systems, and power circuits in accordance with safety engineering standards. Those people working on a project must be familiar with safety concepts common in automation.

1.3 Proper Use

The M3000® modular control system is suitable for control applications in the medium to high end power ranges.

M3000® is designed for use within the overvoltage category defined by IEC 60364-4-44 for controlling machines and industrial processes in low voltage systems in which the rated supply voltage does not exceed 1,000 V alternating current (50/60 Hz) or 1,500 V direct current.

Qualified project management and proper transportation, storage, installation, and use are required to ensure fault-free, reliable, and safe operation of M3000®.

M3000® and M3000® modules must not be brought into operation until it has been ensured that the equipment in which they are installed complies with the current version of the EU machinery directive.

The M3000® control system and M3000® modules may be used only under the conditions and situations specified in this manual and in the documentation of the M3000® modules.

Any other or more extensive use is not permissible.

The following are also required for proper use:

- Compliance with the requirements detailed in this manual,
- Compliance with the requirements of individual M3000® module documentation,
- Compliance with all of the product related hardware and software documentation required for the relevant application,
- Compliance with the relevant nationally and internationally applicable regulations, standards, and directives, e.g., the regulations specified by a professional organization, such as TÜV or VDE

1.3.1 Safety Related Systems

WARNING

As with any electronic control system, the failure of certain components when using M3000® or M3000® modules might lead to an uncontrolled and/or unpredictable operational condition. The user should take into consideration the system level effects of all types of failures and implement corresponding safety measures.

Special measures are required to use control technology in safety related systems.

When planning to use control technology in a safety related system, the user should seek detailed advice in addition to any available standards or guidelines for safety installations.
1.4 Warranty and Liability

Moog's standard delivery and payment conditions apply. The owner/operator will have access to these by the time the contract is closed at the latest.

Warranty and liability claims for personal and material damage will be excluded when they are the result of the following, among others:

- Improper use of the M3000® control system or M3000® modules
 ⇒ "1.3 Proper Use" on page 2
- Use of the M3000® control system or M3000® modules in a technically imperfect condition
- Use of the M3000® control system or M3000® modules by unqualified users
 ⇒ "1.2 Selection and Qualification of Personnel" on page 2
- Failure to comply with this manual, the documentation of the M3000® modules, or the product related hardware and software documentation required for the relevant application
- Failure to comply with the relevant nationally and internationally applicable regulations such as the regulations of a professional association, the TÜV, or the VDE
- Improper deployment of the M3000® control system or M3000® modules, such as in a potentially explosive, excessively warm, or excessively cold environment.
- Improper storage, transportation, mounting, removing, connection, bringing into operation, operation, cleaning, or maintenance of the M3000® control system or M3000® modules.
- Storage or transportation of M3000® modules or accessories outside of the original packaging.
 ⇒ "9 Transportation and Storage" on page 66
- Unauthorized or improperly executed structural changes to the M3000® control system or M3000® modules.
- Unauthorized or improperly executed repairs on the M3000® control system or M3000® modules.
 ⇒ "8.2.2 Repair" on page 65
- Damage due to the intrusion of foreign objects or acts of God.

1.5 Inspection of Delivery

After receiving the delivery, please check the original packaging and its contents for any damage. If the packaging or contents exhibit any damage, do not bring the items into operation. In this case, immediately notify Moog or the responsible supplier. In addition, the packaging should be retained. The packaging might be needed to enforce damage compensation claims on the transport company.

After taking the delivery, please check whether all items listed on the delivery docket are present. If anything is missing, immediately notify Moog or the responsible supplier.

It is advisable to retain the original packaging for any future transport or storage needs.

Exclusion of Warranty and Liability

Inspection of Delivery

Retain the Original Packaging
1.6 Environmental Protection

1.6.1 Emissions

M3000® modules do not have any harmful emissions when used properly.

1.6.2 Disposal

The applicable disposal regulations must be observed when disposing of M3000® modules!

1.7 Standards

1.7.1 CE Labeling of M3000® Modules

All M3000® modules comply with the standards specified in their relevant declaration of conformity. CE labeling of the M3000® modules is based on proper installation of the control system with proven electromagnetic compatibility (EMC).

1.7.2 IEC 61131-2

The M3000® control system and M3000® modules comply with the requirements of IEC 61131-2.

Where technical requirements lead to deviations from the standard, these are specified in this manual or in the documentation of the relevant M3000® modules.

1.7.3 Electromagnetic Compatibility (EMC)

M3000® modules comply with the requirements and protection targets of the EU directive 89/336/EEC “Electromagnetic Compatibility” (EMC directive) and comply with the harmonized European standards (EN) that were published in the Official Journals of the European Union for programmable controllers.

Especially important are the rules for proper EMC wiring in cabinets and buildings according to IEC 61131-4. Installation in metal, grounded cabinets is preferred.

M3000® modules are designed for use under normal operating conditions in industrial environments and comply with the following standards:

• DIN EN 61000-6-2
• DIN EN 61000-6-4

If suitable additional measures are taken, M3000® modules may also be employed in residential, commercial and light-industrial environments in compliance with the following standards:

• DIN EN 61000-6-1
• DIN EN 61000-6-3

Suitable additional measures:

☞ "4.2 Use in Special Environments" on page 27
If the system does not comply with the requirements of DIN EN 61000-6-1 and DIN EN 61000-6-3, despite the additional measures, M3000® modules must not be used in residential, commercial and light-industrial environments.

EMC conformity may be presumed only under the following conditions:

• Sufficient shielding
• Mounting of the DIN rail module onto a DIN top-hat rail that is attached to an electrically conductive, grounded mounting plate

M3000® modules must be powered from a power supply with SELV (Safety Extra-Low Voltage) according to DIN EN 60950-1. Therefore the EU low voltage directive is not relevant for the M3000® control system because the specified voltage levels lie below the limits.

1.8 Trademarks

Moog and Moog Authentic Repair are registered trademarks of Moog Inc. and its subsidiaries.
M3000® is a trademark of Moog GmbH that is registered in the EU.

ℹ️ All product and company names mentioned in this manual might be protected trademarks or brands of the relevant manufacturer.
The absence of the symbols ® or ™ does not indicate that the name is free from trademark protection.

1.9 Software Copyrights

The software that is installed on M3000® products at the time of delivery is the property of the manufacturer. At the time of delivery, every piece of installed software is covered by copyright protection. It may be reproduced only with the approval of the manufacturer or in accordance with the license agreements.
2 Safety Instructions

This chapter summarizes the most important safety instructions. When handling the M3000® control system or M3000® modules the safety instructions in the other chapters of this manual must be followed as well as the safety instructions in the product related hardware and software documentation required for the specific application.

Following the safety instructions helps to avoid accidents, faults, and material damage!

2.1 Typographical Conventions

The following symbols and styles are used for identifying the different types of safety instructions:

- **DANGER** Identifies safety instructions that are intended to warn of an immediate and impending danger to life and limb or major property damage. Failure to observe these safety instructions will lead inevitably to death, serious personal injury (disablement) or major property damage!

- **WARNING** Identifies safety instructions that are intended to warn of potential danger to life and limb or the potential for major property damage. Failure to observe these safety instructions might lead to death, serious personal injury (disablement) or major property damage!

- **CAUTION** Identifies safety instructions that are intended to warn of slight personal injury or minor property damage. Failure to observe these safety instructions might lead to slight personal injury or minor property damage.

Additional typographical conventions:

⇒ "12.1 Typographical Conventions" on page 126

2.2 Safety Instructions

2.2.1 Safety Related Systems

WARNING As with any electronic control system, the failure of certain components when using M3000® or M3000® modules might lead to an uncontrolled and/or unpredictable operational condition. The user should take into consideration the system level effects of all types of failures and implement corresponding safety measures.

More on this subject: ⇒ "1.3.1 Safety Related Systems" on page 2
2.2.2 Environmental Conditions

WARNING Maintain under all circumstances the required environmental conditions specified for the control system M3000® or M3000® modules.

This ensures fault-free, reliable, and safe operation.

WARNING The PC on which the MACS development environment is installed must be suitable for the environmental conditions in which it will operate.

This ensures fault-free, reliable, and safe operation.

WARNING It is not permissible to operate the M3000® control system or M3000® modules in a potentially explosive environment.

WARNING The M3000® control system and M3000® modules must not come into direct contact with liquids. Danger of short-circuit!

If they do come into direct contact with a liquid, immediately disconnect the power supply! Before bringing the system back into operation, it is essential that all affected components are completely dry and have been inspected by a suitably qualified technician.

More on this subject:

⇒ "4 Environmental Conditions" on page 26
⇒ "10.2.2 Environmental Conditions" on page 69

2.2.3 ESD

WARNING Protect the M3000® control system, M3000® modules, and the license key from electrostatic discharges!

Electrostatic discharges might damage the device's internal components or delete the device's internal memory.
2.2.4 Project Planning and Installation

DANGER

The L2+/M2 power supply terminals of the MSC type D136E001-001 are not protected against reverse polarity (in deviation from the requirements of IEC 61131-2). Reverse polarity on terminals L2+ and M2 will lead to permanent damage to the MSC!

The L2+/M2 power supply terminals of the other MSC types are protected against reverse polarity.

The L1+/M1 power supply terminals of all MSC types and the power supply terminals of the other M3000® modules are protected against reverse polarity.

If the polarity of these power supply terminals is reversed, the modules will not function.

WARNING

The vent holes of M3000® modules facilitate convection cooling and must never be covered!

Covered vent holes might result in overheating and fire.

WARNING

No work of any kind, such as mounting, removing, wiring, or repairs to the M3000® control system or M3000® modules may be performed while the control system or the modules are in operation!

There is a danger of:

- Uncontrolled movements
- Permanent damage
- Malfunctions

Before performing any work on the M3000® control system or M3000® modules, it is essential that the system be stopped and the power supply disconnected.

Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

WARNING

M3000® modules must be protected from overvoltages and/or reverse energization from the sensor to the module!

There is a danger of:

- Permanent damage by overheating or fire
- Malfunctions

M3000® modules must have the correct voltage, polarity, and terminal assignments.
WARNING The internal electronics of DIN rail modules and attached sensors must be supplied with power from a permanently connected (unswitched) power supply that cannot be individually switched off, without switching off the module's power supply.

If a switched power supply is used, such as when there are intermediate switching devices (emergency stops, manual operators, etc.), the following problems might arise, depending on the state of the power supply for the internal electronics of the module and sensors (table 3 on page 40):

- Reverse energization from sensor to module
- Invalid sensor data

WARNING Sensors that are connected to digital inputs of DIN rail modules with several I/O groups, such as MSC, QDIO, or RDIO, must under all conditions be supplied from the same power supply as the corresponding I/O group to which the sensor is connected!

Otherwise, if the power supply for the internal electronics of the module is switched off, there might be reverse energization from the sensor to the module.

There is a danger of:

- Uncontrolled movements
- Fault or failure of a manual control
- Permanent damage to the module
- Malfunctions

More on these subjects:

- "5 Mechanical Structure" on page 28 or
- "6 Project Planning and Installation" on page 36

2.2.5 Update Rate of E-Bus Messages

WARNING The I/O extension modules QDIO and QAIO 16/4 monitor the E-bus activity and disable their outputs if they do not receive an E-bus message more frequently than 50 ms.

To avoid this, go to the MACS development environment and set the value of the task interval or the value of 'UpdateRate' so that the product of the two values is less than 50 ms.

More on this subject:

- "7.4.3.2 Update Rate of E-Bus Messages" on page 57
2.2.6 Shutdown and Service

WARNING To avoid damage to M3000® modules or accessories, cleaning, maintenance, and repair tasks may be performed only by Moog or Moog's authorized service agents.

Warranty and liability claims for personal and material damage are excluded when, among other reasons, they are due to unauthorized repairs or other unauthorized interventions.

"1.4 Warranty and Liability" on page 3

WARNING No work of any kind, such as mounting, removing, wiring, or repairs to the M3000® control system or M3000® modules may be performed while the control system or the modules are in operation!

There is a danger of:
- Uncontrolled movements
- Permanent damage
- Malfunctions

Before performing any work on the M3000® control system or M3000® modules, it is essential that the system be stopped and the power supply disconnected. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

WARNING The M3000® control system and M3000® modules must not come into direct contact with liquids. Danger of short-circuit!

If they do come into direct contact with a liquid, immediately disconnect the power supply! Before bringing the system back into operation, it is essential that all affected components are completely dry and have been inspected by a suitably qualified technician.

WARNING If an M3000® module is to be taken out of operation, the entire system must always be shut down and disconnected from all power supplies. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

The M3000® module must be protected against unintentional restarting!

If the M3000® module is connected to other devices and/or facilities, always consider the full consequences and take appropriate precautions before switching off the module.

More on these subjects:

"8 Shutdown and Service" on page 64
2.2.7 Transportation and Storage

WARNING
Maintain, under all circumstances, the required environmental conditions specified for transportation and storage of the control system M3000® or M3000® modules.

- "9.1 Environmental Conditions" on page 66
This ensures fault-free, reliable, and safe operation.

More on this subject:
"9 Transportation and Storage" on page 66

2.2.8 Communication Between MSC and MACS

WARNING
The MSC’s operational state can be altered with the MACS development environment when the MSC is connected online with MACS.

This can be done by means of the following actions, for example:

- Stopping or resetting the program
- Setting breakpoints
- Activating the single step mode
- Downloading application programs
- Writing or forcing values

Therefore, the operator must always consider the effects and take appropriate precautions before altering the operational state of the MSC with MACS.

More on this subject:
"10.5 Programming and Configuration" on page 80
2.2.9 License Key of the MSC

WARNING The license key of the MSC must be protected from electrostatic discharges!
Electrical discharges might damage the license key or delete the contents of the license key's memory.

WARNING The license key may be inserted or removed only when the MSC is powered down!
Attempting to insert or remove the license key during operation might damage the license key or the MSC permanently.

WARNING The license key must always remain inserted while the MSC is in operation. Otherwise, the MSC will not function.

If the license key is removed during operation, the application program will stop after a few minutes. If the MSC is connected online to the MACS development environment, a corresponding error message will appear in MACS.
In addition, the digital output 'Outputs Enabled' will be switched to the 0 state, thereby disabling all of MSC's digital and analog outputs and terminating the E-bus communication.

More on this subject: "10.6 License Key" on page 81

2.2.10 Reset Button of the MSC

WARNING To avoid damage, use only a suitable, electrically non-conductive tool to actuate the reset button on the front panel of the MSC. A light pressure is sufficient.

WARNING If the most recent status in the online mode (MACS logged in) was 'Start' before the MSC was switched off or reset, the boot project will always be started after the MSC is switched back on or reset.

This will occur regardless of which application program was previously running.
In other words, the application program that will be started automatically after the MSC is switched on or reset might be different from the application program that was executing immediately prior.
More on this subject: "10.7 Reset Button" on page 84
2.2.11 Switching Back on or Resetting the MSC

WARNING If the most recent status in the online mode (MACS logged in) was 'Start' before the MSC was switched off or reset, the boot project will always be started after the MSC is switched back on or reset.

This will occur regardless of which application program was previously running. In other words, the application program that will be started automatically after the MSC is switched on or reset might be different from the application program that was executing immediately prior.

More on this subject:
⇒ "10.8.1.3 Examples" on page 87

2.2.12 'Outputs Enabled' Output of the MSC

WARNING If there is a defect in an output stage, the 'Outputs Enabled' signal will not necessarily shut down all of the outputs securely.

More on this subject:
⇒ "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116
3 Short M3000® System Overview

The M3000® control system comprises the following hardware and software components:

- **M3000® starter kit**
 Complete package including everything needed to get started
 ⇒ "3.2 M3000® Starter Kit" on page 17

- **M3000® modules**
 - MSC (Moog Servo Controller)
 Control module for DIN top-hat rail mounting
 ⇒ "3.3.1 MSC" on page 18
 - QDIO
 Digital I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus)
 ⇒ "3.3.2.1 QDIO and QAIO 16/4" on page 19
 - QAIO 16/4
 Analog I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus)
 ⇒ "3.3.2.1 QDIO and QAIO 16/4" on page 19
 - QCAN
 CAN extension module which can be used to make available the LocalCAN bus of an E-bus group for external CAN bus network stations (over a D-sub front panel connector)
 ⇒ "3.3.2.2 QCAN" on page 20
 - RDIO
 Remote module with digital I/Os and CANopen interface (connection over CAN bus)
 ⇒ "3.3.3.1 RDIO" on page 21
 - RTEMP
 Temperature control module with TIA/EIA 232 and CANopen interface (connection over CAN bus)
 ⇒ "3.3.3.2 RTEMP" on page 21
 - RDISP
 Display and operating terminal with TIA/EIA 232 and CANopen interface (connection over CAN bus)
 ⇒ "3.3.3.3 RDISP" on page 22

- **License keys**
 Hardware keys necessary for the operation of the MSC
 ⇒ "3.4 License Key" on page 23

- **MACS (Moog Axis Control Software)**
 Development environment according to IEC 61131 for solving complex control tasks
 ⇒ "3.5 Application Programs" on page 24

- **MACS HMI (Moog Axis Control Software Human Machine Interface)**
 Visualization package which can be run without MACS
 ⇒ "3.6.1 MACS HMI Visualization Package" on page 25

Moog web site on M3000®: http://www.moog.com/M3000

The M3000® modules mentioned here represent only a part of Moog's current product range. In addition to other M3000® modules, Moog's product range includes a large variety of accessories.
⇒ "11 Product Range" on page 118
3.1 M3000® System Architecture

The control system M3000® has the hardware and software structure necessary for modular and flexible automation solutions with distributed intelligence.

The MSC control module can use a serial TIA/EIA 232 (previously RS 232) connection to communicate over the MACS interface with the PC on which the MACS development environment is installed.

- "10.5.1 Communication Between MSC and MACS" on page 80

The MSC control module can use an Ethernet connection (LAN, company network, peer-to-peer connection) to communicate with another controller, development environment, or visualization package.

- "7.1 Ethernet" on page 46
- "10.5.1 Communication Between MSC and MACS" on page 80
- "10.5.1.2 Ethernet Communication Interface" on page 81

To create real time capable applications, even in distributed systems and to give the application a better structure, M3000® can also be divided hierarchically (into several CAN buses).

- "7.3 CAN Bus and CANopen" on page 50

WideCAN and LocalCAN are two equal, mutually independent CAN bus interfaces. In a typical application they are used as follows:

- **WideCAN** can be used for networking of individual control groups or remote modules. Usually, WideCAN is used for synchronization and data exchange between the control groups and operating stations of a machine or system.

 - "3.3.3 R-Modules (Remote Modules)" on page 20
 - "7.5.4 WideCAN Bus Groups" on page 62

 In addition, the WideCAN network can integrate other components with a CAN bus or CANopen interface, such as motor controllers, hydraulic valves, and radial piston pumps.

Moog's current product range offers an extensive selection of motor controllers, hydraulic valves, and radial piston pumps.

- **LocalCAN** connects the DIN rail modules within a LocalCAN bus group and, if applicable, the QCAN to the connected LocalCAN bus groups or CAN sensors/actuators.

 - "3.3.2.2 QCAN" on page 20
 - "7.5.3 LocalCAN Bus Groups" on page 61
Figure 1: M3000® System Architecture (Example)
3.2 M3000® Starter Kit

The M3000® starter kit includes everything needed to get started:

- MSC with digital open emitter outputs, 2 MB RAM
- Power supply 24 V 10 A
- License key, green
- QDIO 16/16-0.5
- MACS development environment
- Software maintenance contract
- Crossed TIA/EIA 232 interface cable, 5 m (5.47 yd)
- Crossed Ethernet interface cable, 10 m (10.94 yd)
- CAN bus interface cable, 3 m (3.28 yd)
- 11 Plug-in terminal strips with screw terminals, 18 pole
- Plug-in terminal strip with screw terminals, 9 pole

The included DIN rail modules MSC and QDIO are mounted (together with the power supply) on a single mounting plate. A suitable power cord is the only additional item required to facilitate connection to the power source.
3.3 M3000® Modules

The M3000® modules mentioned here represent only a part of Moog's current product range. In addition to other M3000® modules, Moog's product range includes a large variety of accessories.

3.3.1 MSC

The MSC digital control module is a fully programmable multi-axis controller. The inputs and outputs of the MSC can be extended locally by attaching Q-modules. The MSC and the attached modules then form an E-bus group. MSCs and Q-modules within E-bus groups communicate over the internal E-bus.

The MSC is programmed and configured with the MACS development environment (complies with IEC 61131).

Detailed information about the MSC:

Moog web site on the MSC: http://www.moog.com/MSC
3.3.2 Q-Modules

The following Q-modules are available from Moog:

- QDIO (digital I/O extension module)
 ⇒ "3.3.2.1 QDIO and QAIO 16/4" on page 19
- QAIO 16/4 (analog I/O extension module)
 ⇒ "3.3.2.1 QDIO and QAIO 16/4" on page 19
- QCAN (CAN extension module)
 ⇒ "3.3.2.2 QCAN" on page 20

Q-modules can be used only as E-bus slaves within E-bus groups.
⇒ "7.5.2 E-Bus Groups" on page 60

When using an RDIO as E-bus master, only QDIOs can be used as E-bus slaves.
⇒ "7.4.2.1 E-Bus Master and E-Bus Slaves" on page 56

Refer to the Q-modules' documentation for more detailed information.
Moog web site on the Q-modules: http://www.moog.com/Q-Modules

3.3.2.1 QDIO and QAIO 16/4

QDIO and QAIO 16/4 I/O extension modules can be used to locally extend the inputs and outputs of an MSC. They have no internal intelligence. Instead, the MSC actuates them via I/O operation directly over the internal E-bus.

QDIO 16/16-0,5 is a digital I/O extension module with 16 digital inputs and 16 individually configurable digital I/Os.
QDIO 16/16-0,5 provides positive switching inputs and I/Os.
QDIO 16/16-0,5N provides zero switching inputs and I/Os.

QAIO 16/4 is an analog I/O extension module with 16 analog inputs and 4 analog voltage outputs (±10 V).
QAIO 16/4-V provides 16 voltage inputs (±10 V).
QAIO 16/4-A provides 16 current inputs (0–20 mA).
3.3.2.2 QCAN

QCAN is a CAN extension module which can be used to make available the LocalCAN bus of an E-bus group for external CAN bus network stations (over a D-sub front panel connector).

3.3.3 R-Modules (Remote Modules)

The following R-modules are available from Moog:

- RDIO (remote module with digital I/Os and CANopen interface)
 ⇒ "3.3.3.1 RDIO" on page 21
- RTEMP (temperature control module)
 ⇒ "3.3.3.2 RTEMP" on page 21
- RDISP (display and operating terminal)
 ⇒ "3.3.3.3 RDISP" on page 22

IEC 61131 application programs cannot run on R-modules.

R-modules connect to other network stations over the CAN bus.
⇒ "7.3 CAN Bus and CANopen" on page 50

Refer to the R-modules' documentation for more detailed information.
3.3.3.1 RDIO

RDIO is a remote module with digital I/Os and CANopen interface. RDIOs can be parameterized as a CANopen slave according to CiA DS 401.

RDIO 16/16-0,5 provides 16 positive switching digital inputs and 16 positive switching digital I/Os.

3.3.3.2 RTEMP

RTEMP is a precise temperature control module with TIA/EIA 232 and CANopen interface, setpoint adaptation (without oscillation), automatic soft start, control variable transfer when sensor breaks, heating current monitoring, measurement/control circuit alarm, and configurable alarm outputs. Its self-optimizing feature ensures the shortest possible startup times.

RTEMP 8-CAN is an 8 channel controller.

The CPRTEMP software (needed to program and configure the RTEMP) is not included with RTEMP. CPRTEMP is available from Moog as an accessory.

→ "11.5.2 Software for R-Modules" on page 122
3.3.3.3 RDISP

RDISP is a versatile display and operating terminal with TIA/EIA 232 and CANopen interface as well as a graphical LCD display and function keys which can be labelled. A small slip of paper can be inserted below the keys.

RDISP 22 provides 22 function keys and a display with max. 8 lines of 40 characters each or random graphics.

Dimensions of RDISP 22:

\[187 \text{ mm} \times 120 \text{ mm} \times 56 \text{ mm} \ (7.36 \text{ in} \times 4.72 \text{ in} \times 2.2 \text{ in}) \]

The CPRDISP software (needed to program and configure the RDISP) is not included with RDISP. CPRDISP is available from Moog as an accessory.

* "11.5.2 Software for R-Modules" on page 122

3.3.4 Identification

M3000® modules can be identified by their nameplate.

Identification of M3000® Modules

The DIN rail module's I/O designations are located on the front panel.

Terminal assignment of the MSC:

* "10.4 View of the Module and Terminal Assignment" on page 72

Refer to the relevant documentation for detailed information about the nameplate and terminal assignment of the other M3000® modules.
3.4 License Key

The license key has to be inserted into the MSC’s license key slot «LK» (far right on the front panel of the MSC).
The MSC does not function without license key.

The following information is saved in the license key:

- Run-time license of the MSC and list of accessible MACS libraries
 ⇒ "10.6.1 Run-Time License and Accessible Libraries" on page 82
- CANopen node-ID of the MSC’s CAN bus interfaces
 ⇒ "10.6.2 CANopen Node-ID and IP Address" on page 82
- IP address of the MSC’s Ethernet interface
 ⇒ "10.6.2 CANopen Node-ID and IP Address" on page 82

If the MSC is replaced, this information will remain saved in the license key. If the license key is inserted into a different MSC, the run-time license, CANopen node-ID and IP address can be used from that MSC.

The extent of the MSC’s features depends on the license key used. License keys enabling varying types of features are available from Moog as accessories.

⇒ "11.4 License Keys" on page 121
3.5 Application Programs

Application programs have to be downloaded onto the MSC control module and started to be executed by the MSC.

The MACS development environment is needed to create executable IEC 61131 application programs for the MSC. With MACS, the application program can be programmed, compiled, downloaded and started.

- "3.6 MACS Development Environment" on page 24
- "10.5.1 Communication Between MSC and MACS" on page 80

Application programs can be saved and executed in the MSC in the following manner:
- As a boot project in the flash EEPROM
- In RAM

An application program saved as a boot project will be loaded into RAM whenever the MSC's power supply is switched on or when the MSC is reset.

An application program that is only executed in RAM without being saved as a boot project will not be saved in the MSC when it is switched off or when the power supply fails. After the power supply is switched back on, the application program must be downloaded once more from the MACS development environment!

Behavior of the MSC at switching on and switching off the power supply:
- "10.8.1 Behavior at Switching on and Switching off" on page 85

3.6 MACS Development Environment

WARNING

The PC on which the MACS development environment is installed must be suitable for the environmental conditions in which it will operate.

This ensures fault-free, reliable, and safe operation.

MACS must be installed on a personal computer (PC). This PC then represents the PADT (programming and diagnostic tool) specified in IEC 61131.

Scope of functionality of MACS
- Programming, testing, and optimization of IEC 61131 application programs
- Documentation of IEC 61131 application programs
- Visualization of IEC 61131 application programs
- Hardware configuration of M3000® modules
MACS supports the following programming languages:

- Instruction List (IL)
- Structured Text (ST)
- Ladder Diagram (LD)
- Function Block Diagram (FBD)
- Sequential Function Chart (SFC)
- Continuous Function Chart (CFC)

Refer to the documentation for the MACS development environment for more detailed information.

Moog web site on MACS: http://www.moog.com/MACS

The MACS development environment is available from Moog as an accessory.

"11.5 Software" on page 122

3.6.1 MACS HMI Visualization Package

MACS is also available from Moog as a MACS HMI visualization package.

"11.5 Software" on page 122

MACS HMI can be used only for the visualization of an application program. It does not include any functionality for creating or editing application programs.
4 Environmental Conditions

WARNING Maintain under all circumstances the required environmental conditions specified for the control system M3000® or M3000® modules.

This ensures fault-free, reliable, and safe operation.

WARNING The PC on which the MACS development environment is installed must be suitable for the environmental conditions in which it will operate.

This ensures fault-free, reliable, and safe operation.

WARNING It is not permissible to operate the M3000® control system or M3000® modules in a potentially explosive environment.

WARNING The M3000® control system and M3000® modules must not come into direct contact with liquids. Danger of short-circuit!

If they do come into direct contact with a liquid, immediately disconnect the power supply! Before bringing the system back into operation, it is essential that all affected components are completely dry and have been inspected by a suitably qualified technician.

4.1 Requirements of IEC 61131-2

The M3000® control system and M3000® modules comply with the requirements of IEC 61131-2.

Where technical requirements lead to deviations from the standard, these are specified in this manual or in the documentation of the relevant M3000® modules.

Environmental conditions for the MSC:

- "10.2.2 Environmental Conditions" on page 69

Refer to the relevant documentation for the specified environmental conditions for the other M3000® modules.
4.2 Use in Special Environments

In the following cases, M3000® modules must **not** be used without taking additional measures:

- At sites with difficult operating conditions, like those caused by
 - Large amounts of dust
 - Elevated air humidity
 - Aggressive vapors or gases
 - Corrosive atmospheres
 - Potentially explosive environments

In these cases, the suitable additional measures to be taken may include, for example, installation in specially designed cabinets.

- In systems that require special monitoring, such as:
 - Elevators
 - Electrical systems located in particularly (potentially) hazardous environments
 - In residential, commercial, and light-industrial environments
 - In medical environments

Examples of suitable additional measures in these cases may include:

- Installation in grounded, shielded metal cabinets
- Installation of filters in the power supply cables
- Use of shielded cables outside of cabinets
5 Mechanical Structure

M3000® modules are divided according to their mechanical construction into the following categories:

- DIN rail modules (such as MSC, QAIO 16/4, or QDIO)
- Other M3000® modules (such as RDISP)

Information about the DIN rail modules:
☞ "5.1 DIN Rail Modules" on page 28

Refer to the relevant documentation for the dimensions of the other M3000® modules and information about their mounting/removing.

5.1 DIN Rail Modules

5.1.1 Views of the Module

![Front View of DIN Rail Modules](image1)

![Side View of DIN Rail Modules](image2)
5.1.2 Dimensions

Due to the lateral locating pins, the DIN rail module’s installation width will depend on whether it will be installed as a single module, row module, or end module.

<table>
<thead>
<tr>
<th>Installation Width</th>
<th>Individual Module</th>
<th>Installed As Row Module</th>
<th>End Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module width + 11 mm (0.43 in) (locating pins protrude at the left and right)</td>
<td>Module width (locating pins disappear into the adjacent modules)</td>
<td>Module width + 5.5 mm (0.22 in) (locating pins protrude on only one side)</td>
<td></td>
</tr>
</tbody>
</table>

Height 170 mm (6.69 in)

Depth 85.5 mm (3.37 in) (without accessories like mating connectors or plug-in terminal strips)

When accessories like mating connectors or plug-in terminal strips are used, an installation depth of 50 mm (2 in) is usually required.

Table 1: Dimensions of DIN Rail Modules

Refer to the relevant documentation for the overall widths of the various DIN rail modules.

Dimensions of the MSC:
⇒ "10.2 General Specifications" on page 68
5.1.3 Arrangement on DIN Top-Hat Rails

WARNING The vent holes of DIN rail modules facilitate convection cooling and must never be covered! Covered vent holes might result in overheating and fire.

DIN rail modules must be arranged next to each other on a DIN top-hat rail TH 35-7.5 in accordance with DIN EN 60715.

![Arrangement of DIN Rail Modules on a Vertical Mounting Plate](image)

The DIN top-hat rail must be attached to a vertical, metal mounting plate and connected to the protective earth conductor.

Additional information about the grounding concept for DIN rail modules:
- "6.1 Grounding Concept" on page 37

Information about mounting/removing DIN rail modules:
- "5.1.4 Mounting and Removing" on page 32

Maintain the minimum distances shown in figure 15 on page 31 to ensure:
- Sufficient room for connecting the supply and signal cables
- Sufficient room for mounting or removing the DIN rail modules
- Convection cooling

If operational reasons force the selection of other arrangements, the performance ratings of the DIN rail modules will decrease or forced cooling measures will be needed.

Additional information about arranging DIN rail modules:
- "7.5.2 E-Bus Groups" on page 60
If shielding is required for the signal cables when connecting the signal cables, make sure the distance between the DIN rail modules and the cable conduit is sufficiently large.

Additional information about shielding signal cables when connecting analog sensors to an MSC:

"10.12.3.1 Shielding Signal Cables" on page 104
5.1.4 Mounting and Removing

5.1.4.1 Mounting DIN Rail Modules

WARNING

No work of any kind, such as mounting, removing, wiring, or repairs to the M3000® control system or DIN rail modules may be performed while the control system or the modules are in operation!

There is a danger of:
- Uncontrolled movements
- Permanent damage
- Malfunctions

Before performing any work on the M3000® control system or DIN rail modules, it is essential that the system be stopped and the power supply disconnected. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.

No tools are needed to mount DIN rail modules.

Procedure for mounting DIN rail modules:

1. Unlock the module to be mounted by pulling out the two red locking slides.

 ![Figure 17: Unlocking a DIN Rail Module](image)

2. If you wish to attach the module next to the right of a previously mounted DIN top-hat rail, then follow step 1 to also unlock the module that is already located on DIN top-hat rail.

 Additional information about arranging the modules:
 - "5.1.3 Arrangement on DIN Top-Hat Rails" on page 30
 - "7.5.2 E-Bus Groups" on page 60

 CAUTION

 To avoid damaging the locating pins of the DIN rail modules, make sure the modules are at least 1 cm apart when placing them on the DIN top-hat rail.
3. Place the module to be mounted on the DIN top-hat rail and carefully push the module towards the DIN top-hat rail until the module engages.
 Do not yet push the red locking slides back into the module! If you do push them back in, you will no longer be able to slide the module on the DIN top-hat rail.

4. Additional modules can be attached to the right as needed. Follow step 1 through step 3 to attach the additional modules.

5. Slide the modules to the left on the DIN top-hat rail until the modules are joined with no gaps. This establishes contact between the Q-connectors and pushes the locating pins into their mating sockets.
6. Push the two red locking slides back into all of the modules. This fixes the modules onto the DIN top-hat rail, establishes an electrical connection with the top-hat rail, and locks the modules together with a secure contact.

![Figure 21: Fixing and Locking a DIN Rail Module](image)

5.1.4.2 Removing DIN Rail Modules

WARNING No work of any kind, such as mounting, removing, wiring, or repairs to the M3000® control system or DIN rail modules may be performed while the control system or the modules are in operation!

There is a danger of:
- Uncontrolled movements
- Permanent damage
- Malfunctions

Before performing any work on the M3000® control system or DIN rail modules, it is essential that the system be stopped and the power supply disconnected. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

No tools are needed to remove DIN rail modules.
Procedure for removing DIN rail modules:

1. Unlock the module to be removed and, if needed, adjacent modules, by pulling out the two red locking slides.

 ![Figure 22: Unlocking a DIN Rail Module](image)

2. Pull the modules at least 1 cm apart.

 CAUTION To avoid damaging the locating pins of the modules, make sure the DIN rail modules are at least 1 cm apart when removing them from the DIN top-hat rail.

 ![Figure 23: Pulling apart DIN Rail Modules](image)

3. Lift off the module from the DIN top-hat rail.

 ![Figure 24: Lifting off a DIN Rail Module from the DIN Top-Hat Rail](image)
6 Project Planning and Installation

The following instructions must be observed in order to ensure that the M3000® control system will be safely integrated into its application environment:

- **IEC 61131**
 - Especially the information contained in IEC 61131-4
- **Safety**
 - All safety and accident prevention regulations applicable to the specific application (such as machinery directives, safety instructions contained in documentation, etc.)
- **Emergency stop**
 - The emergency stop devices (DIN EN 60204) must remain in effect during all of the system's or facility's operational modes.
- **Restarting**
 - Unlocking of the emergency stop devices must not lead to uncontrolled or undefined restarting.
 - Dangerous operational conditions of any kind must not arise following interruption or failure of the power supply.
- **Voltage**
 - Deviations and fluctuations of the supply and load voltages must not fall below or exceed the specified tolerances.
 - Deviations outside the specified operating range might lead to dangerous conditions and functional disturbances in the control system.
- **Power supply 24 V DC**
 - M3000® modules must be supplied only with 24 V DC SELV (Safety Extra-Low Voltage) according to DIN EN 60950-1.
 - \(6.2.1\) Power Supply Characteristics on page 38
- **Wire fault**
 - A cable or wire fault must not lead to undefined conditions. All necessary safety precautions must be taken in the hardware and software.
- **Connection**
 - All connection and signal cables must be installed in such a way that inductive or capacitive interferences will not impair the M3000® control system.
6.1 Grounding Concept

For reasons of functional safety, all circuits must be grounded at a centralized point.

The DIN top-hat rail must have a low resistance connection to the protective earth conductor (PE). It is essential that the DIN top-hat rail is grounded over a connection with the largest possible cross section.

Every circuit must be fused (maximum 12 A).

Load-controlled distribution of the circuits (U1…U3)

6.1.1 Front Panel Connectors' Signal Grounding

The metal housings of all front panel connectors of the MSC are connected internally (in a capacitive manner) to the signal grounding of the DIN top-hat rail.

The metal housings of the front panel connectors of the other DIN rail modules are connected directly to the signal grounding of the DIN top-hat rail.
6.2 Power Supply

The internal electronics of M3000® modules is usually supplied with power via the power supply terminals of the connectors of the M3000® modules.

Connecting the power supply for the internal electronics:
⇒ "6.2.3 Connecting the Power Supply" on page 39

Power supply terminals of the MSC:
⇒ "10.4.1 Terminal Assignment" on page 73

Refer to the relevant documentation for the exact designations of the power supply terminals of the other M3000® modules.

6.2.1 Power Supply Characteristics

Output voltage

Rated voltage: 24 V DC, operates at no-load
SELV according to DIN EN 60950-1
⇒ "6.2.1.1 Safety Extra-Low Voltage (SELV)" on page 38

Run-up time (10–90 %): ≤ 0.2 sec.

In the interest of compatibility with other components, Moog recommends maintaining the power supply tolerance band specified in IEC 61131-2 (19.2 V to 30 V).

Refer to the relevant documentation for the specified voltage ranges of the M3000® modules.

Besides the specified voltage ranges, a total alternating voltage component with a peak value of 5 % of the rated voltage is also permitted.

Output current

If the output current of the power supply is greater than 12 A, the power cable to each M3000® module must be fused to ≤ 12 A or the current must be limited in another way.

Maximum permissible duration of power interruptions

Under full load (PS2 intensity): ≤ 10 ms
(duration of interruption during voltage drops and interruptions to the input voltage)

During primary side voltage drops that are 10 ms or shorter in duration, the output voltage must not fall under 19.2 V when under full load. In addition, the interval between the primary side drops must not be shorter than 1 s.

6.2.1.1 Safety Extra-Low Voltage (SELV)

The safety extra-low voltage is a voltage that will not, under any operating conditions, exceed 42.4 V peak or direct voltage as measured between conductors or between a conductor and ground. The circuit in which SELV is used must be separated from the mains power supply by a safety transformer or something of equal functionality. Always observe national regulations when choosing the rated insulation voltage.
6.2.2 Power Consumption by DIN Rail Modules

<table>
<thead>
<tr>
<th>DIN Rail Module</th>
<th>Power Consumption 1) From 24 V DC (No-Load 2)</th>
<th>Power Consumption 1) From 24 V DC (Full Load)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC Internal Electronics</td>
<td>about 0.5 A</td>
<td>max. 2 A</td>
</tr>
<tr>
<td>Digital Outputs</td>
<td>-</td>
<td>max. 4 A</td>
</tr>
<tr>
<td>RDIO</td>
<td>max. 300 mA</td>
<td>max. 10 A</td>
</tr>
<tr>
<td>QDIO</td>
<td>-</td>
<td>max. 10 A</td>
</tr>
<tr>
<td>QAIO 16/4</td>
<td>about 150 mA</td>
<td>max. 300 mA</td>
</tr>
</tbody>
</table>

Table 2: Power Consumption by DIN Rail Modules

1) These values are provided only as guidelines for estimating the amount of current required. Refer to the relevant documentation for the exact power consumption by DIN rail modules.

2) No-load, i.e., there are no loads, external to the module, drawing current.

6.2.3 Connecting the Power Supply

DANGER The L2+/M2 power supply terminals of the MSC type D136E001-001 are not protected against reverse polarity (in deviation from the requirements of IEC 61131-2). Reverse polarity on terminals L2+ and M2 will lead to permanent damage to the MSC!

The L2+/M2 power supply terminals of the other MSC types are protected against reverse polarity. The L1+/M1 power supply terminals of all MSC types and the power supply terminals of the other M3000® modules are protected against reverse polarity. If the polarity of these power supply terminals is reversed, the modules will not function.

WARNING No work of any kind, such as mounting, removing, wiring, or repairs to the M3000® control system or M3000® modules may be performed while the control system or the modules are in operation!

There is a danger of:
- Uncontrolled movements
- Permanent damage
- Malfunctions

Before performing any work on the M3000® control system or M3000® modules, it is essential that the system be stopped and the power supply disconnected. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

WARNING M3000® modules must be protected from overvoltages and/or reverse energization from the sensor to the module!

There is a danger of:
- Permanent damage by overheating or fire
- Malfunctions

M3000® modules must have the correct voltage, polarity, and terminal assignments.
WARNING The internal electronics of DIN rail modules and attached sensors must be supplied with power from a permanently connected (unswitched) power supply that cannot be individually switched off, without switching off the module’s power supply.

If a switched power supply is used, such as when there are intermediate switching devices (emergency stops, manual operators, etc.), the following problems might arise, depending on the state of the power supply for the internal electronics of the module and sensors (see table 3 on page 40):

- Reverse energization from sensor to module
- Invalid sensor data

<table>
<thead>
<tr>
<th>Condition</th>
<th>Power Supply Internal Electronics</th>
<th>Power Supply Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module and sensors are in operation</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>Reverse energization from sensor to module</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>Invalid sensor data</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>Module and sensors are not in operation</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>

Table 3: Power Supply Conditions of the Module’s Internal Electronics and the Sensors

Refer to the relevant documentation for information about the power supply terminals of the other M3000® modules.

Internal module capacities might cause power spikes of up to 50 A when switching on the power supply for the internal electronics of the DIN rail module. The duration of these spikes is strongly dependent on the internal resistance of the power supply.
6.2.3.1 Connecting to Several Power Supplies

DIN rail modules do not have any protective earth conductor terminals. However they are conductively connected to the DIN top-hat rail after they are engaged and locked onto it. The DIN rail modules thereby receive signal grounding. ⇔ "6.1 Grounding Concept" on page 37

6.2.3.2 Connecting to a Single Power Supply

Assuming that the power limits are observed, the internal electronics of DIN rail modules and the attached sensors may also be supplied from a single power supply.

DIN rail modules do not have any protective earth conductor terminals. However they are conductively connected to the DIN top-hat rail after they are engaged and locked onto it. The DIN rail modules thereby receive signal grounding. ⇔ "6.1 Grounding Concept" on page 37
6.2.3.3 Maximum Admissible Current

All of the power supply terminals of M3000® modules and the associated internal connections are designed for a maximum current of 12 A.

If the current is greater than the maximum current, the following must be employed:
- Several separately fused circuits or
- Several separate power supplies in separated circuits

6.2.4 Connecting Sensors

DANGER

The L2+/M2 power supply terminals of the MSC type D136E001-001 are not protected against reverse polarity (in deviation from the requirements of IEC 61131-2). Reverse polarity on terminals L2+ and M2 will lead to permanent damage to the MSC!

The L2+/M2 power supply terminals of the other MSC types are protected against reverse polarity.

The L1+/M1 power supply terminals of all MSC types and the power supply terminals of the other M3000® modules are protected against reverse polarity.

If the polarity of these power supply terminals is reversed, the modules will not function.

WARNING

The internal electronics of DIN rail modules and attached sensors must be supplied with power from a permanently connected (unswitched) power supply that cannot be individually switched off, without switching off the module's power supply.

If a switched power supply is used, such as when there are intermediate switching devices (emergency stops, manual operators, etc.), the following problems might arise, depending on the state of the power supply for the internal electronics of the module and sensors (see table 3 on page 40):
- Reverse energization from sensor to module
- Invalid sensor data

WARNING

Sensors that are connected to digital inputs of DIN rail modules with several I/O groups, such as MSC, QDIO, or RDIO, must under all conditions be supplied from the same power supply as the corresponding I/O group to which the sensor is connected!

Otherwise, if the power supply for the internal electronics of the module is switched off, there might be reverse energization from the sensor to the module.

There is a danger of:
- Uncontrolled movements
- Fault or failure of a manual control
- Permanent damage to the module
- Malfunctions
The attached sensors must be supplied with power from a permanently connected (unswitched) power supply that cannot be individually switched off, without switching off the module's power supply. Power must not, as shown in figure 29 on page 44, be supplied from switched power circuits!

The sensors within an I/O group must always be supplied with power from the same power supply that supplies the relevant I/O group. They must not, as shown in figure 29 on page 44, be supplied from a separate power supply (due to the danger of reverse energization)!

Outputs may be supplied with power from a switched power supply, for example with intermediate devices (emergency stop, manual operation, etc.).
Wrong Power Supply
Connection of Sensors via a QDIO

The attached sensors must be supplied with power from a permanently connected (unswitched) power supply that cannot be individually switched off, without switching off the module’s power supply. Power must not, as shown here, be supplied from switched power circuits!

The sensors within an I/O group must always be supplied with power from the same power supply that supplies the relevant I/O group. They must not, as shown here, be supplied from a separate power supply (due to the danger of reverse energization)!
6.3 Connecting Signal Cables

WARNING

No work of any kind, such as mounting, removing, wiring, or repairs to the M3000® control system or M3000® modules may be performed while the control system or the modules are in operation!

There is a danger of:

- Uncontrolled movements
- Permanent damage
- Malfunctions

Before performing any work on the M3000® control system or M3000® modules, it is essential that the system be stopped and the power supply disconnected. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

The signal cables of DIN rail modules are connected over plug-in terminal strips that are inserted into the relevant connectors on the front of the module.

6.3.1 Plug-In Terminal Strips

Plug-in terminal strips for the following methods are available from Moog:

- Screw terminals
- Spring loaded terminals

All plug-in terminal strips are suitable for wire cross sections of up to 2.5 mm² (14 AWG).

⇒ "11.8 Plug-In Terminal Strips" on page 124

6.3.1.1 Spring Loaded Terminals

CAUTION

When connecting a wire, insert the screwdriver only into the rectangular opening of the spring loaded terminal. If a screwdriver is inserted into the round opening for the wire, the spring loaded terminal might be destroyed.

Spring loaded terminals make it easy to rapidly connect supply and signal cables.

Procedure for connecting a wire:

1. Insert the tip of a screwdriver into the rectangular opening of the spring loaded terminal and press the screwdriver downward.
2. Insert the wire into the corresponding round opening.
3. Remove the screwdriver from the opening. The spring will hold the wire in place.
7 Networking M3000® Modules

7.1 Ethernet

Refer to the following for information about using the Ethernet interface to facilitate communication between the MSC control module and the MACS development environment:

- "3.1 M3000® System Architecture" on page 15
- "10.5.1 Communication Between MSC and MACS" on page 80
- "10.5.1.2 Ethernet Communication Interface" on page 81

7.1.1 Peer-to-Peer Connections

To establish a peer-to-peer connection between 2 stations in an Ethernet network, 10BaseT cables with crossed twisted pair wires are needed. The connectors should be indirectly wired, pole 1 to pole 3, pole 2 to pole 6, etc.

Refer to "Figure 32 on page 47"

![Figure 30: Ethernet Network with exactly 2 Network Stations](image)

10BaseT cables with crossed twisted pair wires

7.1.2 Networking of More Than 2 Network Stations

A hub is needed for Ethernet networks that have more than 2 stations. The hub transfers the signals sent from one of the stations to every other station in the network. All network stations must be connected radially to the hub using 10BaseT cables with non-crossed twisted pair wires. The connectors should be directly wired, pole 1 to pole 1, pole 2 to pole 2, etc.

Refer to "Figure 33 on page 47"

![Figure 31: Ethernet Network with more than 2 Network Stations](image)

10BaseT cables with non-crossed twisted pair wires
7.1.3 Ethernet Interface Cables

The following diagrams illustrate the terminal assignments for the Ethernet interface cables:

10BaseT Cable with Crossed Twisted Pair Wires

Figure 32: 10BaseT Cable with Crossed Twisted Pair Wires with 8 Pole RJ45 Mating Connectors, Cable Category 5, Wire Cross Section > 0.22 mm² (24 AWG)

10BaseT Cable with Non-Crossed Twisted Pair Wires

Figure 33: 10BaseT Cable with Non-Crossed Twisted Pair Wires with 8 Pole RJ45 Mating Connectors, Cable Category 5, Wire Cross Section > 0.22 mm² (24 AWG)

For the terminal assignment of the Ethernet front panel connector of the MSC control module, see: \(\Rightarrow\) Ethernet connector on page 77

7.2 Serial TIA/EIA Interface Cables

The following variants of serial TIA/EIA interface cables are possible:

- **Null modem cables**
 - \(\Rightarrow\) "7.2.1 TIA/EIA 232 Interface Cables" on page 48
 - \(\Rightarrow\) "7.2.2 TIA/EIA 422 Interface Cables" on page 49

- **Interface cables with 1:1 connection**
 For example: when connecting terminals or displays
 - \(\Rightarrow\) "7.2.1 TIA/EIA 232 Interface Cables" on page 48
 - \(\Rightarrow\) "7.2.2 TIA/EIA 422 Interface Cables" on page 49
 - \(\Rightarrow\) "7.2.3 TIA/EIA 485 Interface Cables" on page 49
7.2.1 TIA/EIA 232 Interface Cables

A TIA/EIA 232 null modem cable can be used as a programming cable to connect the MSC and PC.

TIA/EIA Interface Cables with 1:1 connection can be used to connect terminals or displays.

Figure 34: TIA/EIA 232 Null Modem Cable (Programming Cable) with 9 Pole D-Sub Mating Connectors according to DIN 41652

Figure 35: TIA/EIA 232 Interface Cable with 1:1 Connection with 9 Pole D-Sub Mating Connectors according to DIN 41652
7.2.2 TIA/EIA 422 Interface Cables

TIA/EIA interface cables with 1:1 connection can be used to connect terminals or displays.

Figure 36: TIA/EIA 422 Null Modem Cable with 9 Pole D-Sub Mating Connectors according to DIN 41652

TIA/EIA 422
Null Modem Cable

Wire Cross Section > 0.22 mm² (24 AWG)

Mating Connector (socket contacts)

The other pins are not connected.

Mating Connector (pin contacts)

Figure 37: TIA/EIA 422 Interface Cable with 1:1 Connection with 9 Pole D-Sub Mating Connectors according to DIN 41652

TIA/EIA 422 Interface Cable with 1:1 Connection

7.2.3 TIA/EIA 485 Interface Cables

TIA/EIA interface cables with 1:1 connection can be used to connect terminals or displays.

Figure 38: TIA/EIA 485 Interface Cable with 1:1 Connection with 9 Pole D-Sub Mating Connectors according to DIN 41652

TIA/EIA 485 Interface Cable with 1:1 Connection
7.3 CAN Bus and CANopen

7.3.1 CAN Bus

The CAN bus is a differential two wire bus that was originally developed to facilitate rapid and reliable networking of components in motor vehicles. The many advantages and high reliability of the CAN bus have also made it suitable for use in automation systems and have contributed to it becoming a widespread standard.

7.3.2 CAN Bus Characteristics

CAN bus exhibits the following characteristics:

- Linear topology that can be structured hierarchically
- Message oriented protocol
- Prioritization of messages
- Multi master capability
- Zero loss bus arbitration
- Short block length
- High security of data transmission with very short error recovery times
- Network data consistency
- Detection and disconnection of defective network stations
- Short reaction time for high priority messages
- Standardization (ISO/DIS 11898)
- Cost effective protocol implementation

CAN bus network stations can exchange messages between each other in real time over the CAN bus. For example, set points, actual values, control messages, status messages, as well as configuration and parameter data can be transmitted over the CAN bus.

Identifiers act as message labels in the CAN protocol. The messages can be received by all network stations simultaneously, which is very important for consistency of the data in the network and synchronization of the applications. The identifier determines the message's bus access priority.

CAN bus is a multi master system, i.e., every station in the network can send messages. If several stations attempt to send messages at the same time, the highest priority messages will be sent first. This method guarantees bus assignment without destroying the contents of the messages.
7.3.3 CANopen

CANopen is a standardized communications profile that makes it easy to establish a network of CANopen compatible devices from a variety of manufacturers.

CANopen is based on CAN bus. The communication profile complies with the standard CiA DS 301.

Various device profiles have been defined by the CiA in order to facilitate the connection of various devices classes, such as drives, controllers, angle transmitters, valves, etc. These device profiles enable uniform control of several devices with the same functionality, regardless of manufacturer and model.

7.3.4 M3000® Modules with CAN Bus Interfaces

<table>
<thead>
<tr>
<th>M3000® Module</th>
<th>Number of Connectors</th>
<th>Number of CAN Bus Controllers</th>
<th>CAN Bus Termination Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC LocalCAN</td>
<td>2 Q-connectors (lateral)</td>
<td>1</td>
<td>switchable</td>
</tr>
<tr>
<td>WideCAN</td>
<td>2 D-sub front panel connectors ¹</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>RDIO</td>
<td>2 D-sub front panel connectors ¹</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>RTEMP</td>
<td>2 Q-connectors (lateral) 2 D-sub front panel connectors ¹</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>RDISP</td>
<td>1 D-sub connector (on the rear)</td>
<td>1</td>
<td>switchable</td>
</tr>
<tr>
<td>QCAN LocalCAN</td>
<td>1 Q-connector (lateral) 1 D-sub connector (front)</td>
<td>0</td>
<td>fix</td>
</tr>
</tbody>
</table>

¹ The «WCAN» or «CAN» front panel connectors are connected internally 1:1 with each other. As a result, the M3000® module can be connected directly to the CAN bus without a T-adapter.

The M3000® modules mentioned here represent only a part of Moog's current product range. In addition to other M3000® modules, Moog's product range includes a large variety of accessories.

⇒ "11 Product Range" on page 118

Information about the CAN bus interface cable:
⇒ "7.3.6 CAN Bus Interface Cable" on page 54

Information about the CAN bus interfaces of the MSC:
⇒ "10.15 CAN Bus Interfaces" on page 113

Refer to the relevant documentation for detailed information about the CAN bus interfaces of the other M3000® modules.
7.3.5 CAN Bus Networks

7.3.5.1 Wiring

Always observe the following when wiring CAN bus networks:

- **ISO/DIS 11898**
 The cables, mating connectors, and termination resistors used in CAN bus networks must comply with ISO/DIS 11898.

- **Specifications for interface cables**
 When connecting CAN bus network stations, always use shielded cables with 4 twisted pair wires and an impedance of 120 Ω.
 ⇒ "7.3.6 CAN Bus Interface Cable" on page 54

- **Linear structure of CAN bus**
 Avoid branching. Short stub cables with a T-adapter are permitted.
 ⇒ "7.3.5.2 Bus Structure of the CAN Bus" on page 53

- **Stub cables as short as possible**
 Maximum stub cable length: ⇒ table 6 on page 54

- **CAN bus termination resistors**
 At both ends of the CAN bus, a termination resistor of 120 Ω ± 10 % must be connected between CAN_L and CAN_H.

- **Adapt transmission rate to cable length**
 It is necessary to adapt the transmission rate to the length of the CAN bus interface cable.
 ⇒ Table 5 on page 54

- **Sources of interference**
 Do not lay CAN bus interface cables in direct proximity to sources of interference. If this cannot be avoided, double shielded interface cables must be used.

- **Potential equalization at only one point**
 The CAN_GND and CAN_SHLD reference potential may be connected to the signal ground at only one point (at a CAN bus termination resistor, for example).
 ⇒ Figure 39 on page 53

- **Grounding**
 The power supply for M3000® modules must be grounded at the same point as the CAN_GND wire.
7.3.5.2 Bus Structure of the CAN Bus

The CAN bus has a linear structure. Avoid branching. Short stub cables with a T-adapter are permitted.

![Linear Structure of the CAN Bus](image)

1. D-sub connectors with CAN bus termination resistors are available from Moog.
 ⇒ "11.7 CAN Bus Accessories" on page 123

2. CAN bus networks with M3000® modules can only include a maximum of 64 CAN bus network stations.
 ⇒ "7.3.5.3 Number of Network Stations" on page 53

3. CAN bus interface cable
 ⇒ "7.3.6 CAN Bus Interface Cable" on page 54

7.3.5.3 Number of Network Stations

CAN bus networks with M3000® modules can only include a maximum of 64 CAN bus network stations.

ISO/DIS 11898 only specifies networks with up to 30 CAN bus network stations.
As a result, when integrating non-system products into a CAN bus network with M3000® modules, the maximum number of CAN bus network stations might be limited by any existing, older CAN bus drivers.
7.3.6 CAN Bus Interface Cable

7.3.6.1 Terminal Assignment

To ensure disturbance-free operation, it is required that a CAN_GND wire is used in the cable.

Terminal assignment of the CAN connectors on the front panel of the MSC control module: ☞ "10.4.1 Terminal Assignment" on page 73

7.3.6.2 Cable Lengths

The maximum expansion of a CAN bus network will be determined by a variety of variables, such as cable length, transmission rate, and resistance in the cable.

<table>
<thead>
<tr>
<th>Transmission Rate</th>
<th>Maximum Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 kBit/s</td>
<td>25 m (27 yd)</td>
</tr>
<tr>
<td>800 kBit/s</td>
<td>50 m (54 yd)</td>
</tr>
<tr>
<td>500 kBit/s</td>
<td>100 m (109 yd)</td>
</tr>
<tr>
<td>250 kBit/s</td>
<td>250 m (273 yd)</td>
</tr>
<tr>
<td>125 kBit/s</td>
<td>500 m (546 yd)</td>
</tr>
<tr>
<td>100 kBit/s</td>
<td>650 m (710 yd)</td>
</tr>
<tr>
<td>50 kBit/s</td>
<td>1,000 m (1,093 yd)</td>
</tr>
<tr>
<td>20 kBit/s</td>
<td>2,500 m (2,734 yd)</td>
</tr>
<tr>
<td>10 kBit/s</td>
<td>5,000 m (5,468 yd)</td>
</tr>
</tbody>
</table>

Table 5: Maximum Cable Lengths in CAN Bus Networks (Depending on the Transmission Rate)

<table>
<thead>
<tr>
<th>Transmission Rate</th>
<th>Maximum Stub Cable Length</th>
<th>Maximum</th>
<th>Cumulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 kBit/s</td>
<td>2 m (2.1 yd)</td>
<td>20 m</td>
<td>21.8 yd</td>
</tr>
<tr>
<td>500 kBit/s</td>
<td>6 m (6.5 yd)</td>
<td>39 m</td>
<td>42.6 yd</td>
</tr>
<tr>
<td>250 kBit/s</td>
<td>6 m (6.5 yd)</td>
<td>78 m</td>
<td>85.3 yd</td>
</tr>
<tr>
<td>125 kBit/s</td>
<td>6 m (6.5 yd)</td>
<td>156 m</td>
<td>170.6 yd</td>
</tr>
</tbody>
</table>

Table 6: Maximum Permissible Stub Cable Lengths in CAN Bus Networks

The guiding values in tables 5 and 6 are valid only for CAN bus networks that were established in compliance with the requirements in "7.3.5.1 Wiring" on page 52.
7.3.6.3 Suitable Cables

<table>
<thead>
<tr>
<th>Parameters</th>
<th>M3000® Recommendation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Wires</td>
<td>≥ 4, twisted pairs</td>
<td></td>
</tr>
<tr>
<td>Wire Cross Section (for Cu)</td>
<td>0.22–0.34 mm²</td>
<td>When the network is spread out over a greater distance, a larger wire cross section will provide a better signal-to-noise ratio.</td>
</tr>
<tr>
<td>Cable Structure</td>
<td>2 twisted pairs with shielding</td>
<td>Electrically connect the shield to the mating connector's housing and the shielding shroud of the plug-in devices.</td>
</tr>
<tr>
<td>Impedance (1 MHz)</td>
<td>120 Ω</td>
<td>If different cables are used, make sure they have the same impedance.</td>
</tr>
</tbody>
</table>

Table 7: Suitable Cables for CAN Bus Interface Cables

The selection of a suitable cable also depends on site conditions (towing application, environmental considerations, etc.)

For normal use Moog recommends the CAN bus data cable "UNITRONIC® BUS LD" supplied by LAPP KABEL (http://www.lapp.de) or "577 FlexLife™ Thin Cable" or the "5710 FlexLife™ Mid Cable" or the "575 FlexLife™ Thick Cable" supplied by Hans Turck GmbH & Co. KG (http://www.turck.com).

CAN bus interface cables are available from Moog as accessories, in a variety of lengths.

"11.6 Interface Cables" on page 123

7.4 E-Bus

Communication within E-bus groups is done over the E-bus.

Notes on establishing E-bus groups:

"7.5.2 E-Bus Groups" on page 60

Examples of E-bus groups:

"7.5.2.1 Examples" on page 61

7.4.1 E-Bus Interface

The E-bus interface is set up as a serial cyclic shift register. Every communication cycle reserves for each extension module four bytes each in the send and receive messages.

The 40 pole Q-connectors are located laterally on the DIN rail modules that have an E-bus interface.

When the modules are joined with no gaps and are locked on the DIN top-hat rail, the E-bus connection will be properly established over the Q-connectors.

Views of DIN rail modules:

"5.1.1 Views of the Module" on page 28

Mounting DIN rail modules:

"5.1.4.1 Mounting DIN Rail Modules" on page 32

E-bus interface of the MSC:

"10.14 E-Bus Interface" on page 112
7.4.2 E-Bus Communication

Communication within E-bus groups takes place exclusively between the E-bus master and the E-bus slaves. The master sends E-bus messages with output data to the slaves within its E-bus group and receives from the slaves E-bus messages with input data. Direct communication between the slaves of an E-bus group over the E-bus is not possible.

7.4.2.1 E-Bus Master and E-Bus Slaves

The following DIN rail modules can be employed as E-bus master in an E-bus group:

- MSC
- RDIO

<table>
<thead>
<tr>
<th>Permissible Masters</th>
<th>Permissible Slaves</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC</td>
<td>7 I/O extension modules, such as QAIO 16/4 and QDIO (E-bus must be carried through on the Q-connector)</td>
<td>E-bus groups with MSCs as masters function as stand-alone groups. Configuration of the E-bus interface of the MSC and the slaves: “10.14.1 Configuration of the E-Bus Interface” on page 112</td>
</tr>
<tr>
<td>RDIO</td>
<td>6 QDIOs Other M3000® modules must not be attached to an RDIO!</td>
<td>E-bus groups with RDIOs as master must be actuated over the CAN bus.</td>
</tr>
</tbody>
</table>

Table 8: Permissible Masters and Slaves in E-Bus Groups

The duration of transmission of E-bus messages is not influenced by the number of DIN rail modules in the E-bus group.

⇒ "7.4.3.3 Duration of Transmission of E-Bus Messages" on page 57

7.4.3 MSC as E-Bus Master

7.4.3.1 Starting the E-Bus Communication

Immediately after logging in with the MACS development environment, the E-bus configuration contained in the PLC configuration will be transferred to the MSC. If slaves are set in the E-bus configuration, the MSC checks whether the configured slaves are actually attached. Communication over the E-bus is possible only when the slaves actually attached correspond with the arrangement set in the PLC configuration. Otherwise, an error message will be displayed in the MACS development environment.

The E-bus communication will be started automatically after an application program is started. If communication over the E-bus is successful, the LED «Ebus» will illuminate on the front panel of the MSC.

⇒ "10.4.2 LEDs" on page 77

If an error occurs during the communication or if the digital output 'Outputs Enabled' of the MSC is switched to the 0 state, the E-bus communication will be terminated and the LED «Ebus» will be turned off.

⇒ "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116
7.4.3.2 Update Rate of E-Bus Messages

WARNING The I/O extension modules QDIO and QAIO 16/4 monitor the E-bus activity and disable their outputs if they do not receive an E-bus message more frequently than 50 ms.

To avoid this, go to the MACS development environment and set the value of the task interval or the value of ‘UpdateRate’ so that the product of the two values is less than 50 ms.

The update rate setting of the E-bus depends on the task interval. The shortest task interval, set in the task configuration, serves as the time basis for the E-bus.

The update rate is defined by setting the E-bus module parameter ‘UpdateRate’ in the PLC configuration of the MACS development environment. ‘UpdateRate’ can be set so that an E-bus message will always be sent at the end of this task’s cycle (or after 2, 3, 5, 10, 15 or 20 cycles).

<table>
<thead>
<tr>
<th>Shortest Task Interval</th>
<th>E-Bus Module Parameter 'UpdateRate'</th>
<th>Update Rate of E-Bus Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ms</td>
<td>'every third cycle'</td>
<td>An E-bus message is started cyclically every 3 ms (1 ms * 3).</td>
</tr>
<tr>
<td>10 ms</td>
<td>'every tenth cycle'</td>
<td>An E-bus message would be started cyclically every 100 ms (10 ms * 10). However, since no E-bus message is sent more frequently than 50 ms, the I/O extension modules will disable their outputs. The outputs will be re-enabled with the next E-bus message.</td>
</tr>
</tbody>
</table>

Table 9: Update Rate of E-Bus Messages

7.4.3.3 Duration of Transmission of E-Bus Messages

The duration of transmission of the E-bus message, i.e., the length of time required to transmit the E-bus message, is determined by the E-bus clock frequency. The E-bus clock frequency is defined by setting the E-bus module parameter ‘Frequency’ in the PLC configuration of the MACS development environment.

- Clock frequency = 10 MHz ➔ Duration of transmission = 42 µs
- Clock frequency = 5 MHz ➔ Duration of transmission = 84 µs

The selected E-bus clock frequency does not influence the time required to execute the tasks.

When the E-bus group contains QAIOs 16/4, the clock frequency must be set to 5 MHz!

The duration of transmission of E-bus messages is not influenced by the number of DIN rail modules in the E-bus group.
7.4.3.4 Scope of E-Bus Messages

The scope of the E-bus message depends on the slave types attached to the master.

Communication with digital I/O extension modules (such as QDIO)
All input and output data of every digital I/O extension module is transmitted during every E-bus cycle.

Communication with analog I/O extension modules (such as QAIO 16/4)
The data for one output and one input from each analog I/O extension module will be transmitted during every E-bus cycle. Only the input and output data that is used in the application program will be transmitted.

7.4.3.5 Example

One analog and one digital I/O extension module is connected to an MSC.

The E-bus interface of the MSC and the inputs and outputs of the I/O extension modules are configured in the PLC configuration of the MACS development environment.

"10.14.1 Configuration of the E-Bus Interface" on page 112

The following inputs and outputs are used in the application program.

- QAIO 16/4: 7 analog inputs QAIO-IN1 to QAIO-IN7
 3 analog outputs QAIO-OUT1 to QAIO-OUT3
- QDIO: 3 digital inputs QDIO-IN5 to QDIO-IN7
 3 digital outputs QDIO-I/O13 to QDIO-I/O15

The shortest task interval is 1 ms. The module parameter ‘UpdateRate’ is set to ‘each cycle’.

Accordingly, the E-bus message starts cyclically every millisecond.

"7.4.3.2 Update Rate of E-Bus Messages" on page 57

The digital inputs and outputs of the QDIO are updated in every E-bus cycle; once every millisecond in this example.

However, only one analog input and one analog output of the QAIO 16/4 will be updated with each E-bus cycle. For this reason, each analog input is updated only every 7 ms and every analog output is updated only every 3 ms in this example.

<table>
<thead>
<tr>
<th>Time</th>
<th>Cycle No./Message No.</th>
<th>QDIO</th>
<th>QAIO 16/4</th>
<th>QDIO</th>
<th>QAIO 16/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ms</td>
<td>1</td>
<td>all</td>
<td>OUT1</td>
<td>all</td>
<td>IN1</td>
</tr>
<tr>
<td>2 ms</td>
<td>2</td>
<td>all</td>
<td>OUT2</td>
<td>all</td>
<td>IN2</td>
</tr>
<tr>
<td>3 ms</td>
<td>3</td>
<td>all</td>
<td>OUT3</td>
<td>all</td>
<td>IN3</td>
</tr>
<tr>
<td>4 ms</td>
<td>4</td>
<td>all</td>
<td>OUT1</td>
<td>all</td>
<td>IN4</td>
</tr>
<tr>
<td>5 ms</td>
<td>5</td>
<td>all</td>
<td>OUT2</td>
<td>all</td>
<td>IN5</td>
</tr>
<tr>
<td>6 ms</td>
<td>6</td>
<td>all</td>
<td>OUT3</td>
<td>all</td>
<td>IN6</td>
</tr>
<tr>
<td>7 ms</td>
<td>7</td>
<td>all</td>
<td>OUT1</td>
<td>all</td>
<td>IN7</td>
</tr>
<tr>
<td>8 ms</td>
<td>8</td>
<td>all</td>
<td>OUT2</td>
<td>all</td>
<td>IN1</td>
</tr>
<tr>
<td>9 ms</td>
<td>9</td>
<td>all</td>
<td>OUT3</td>
<td>all</td>
<td>IN2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 10: Update Order for Inputs and Outputs of QDIO and QAIO 16/4
7.5 Networking DIN Rail Modules

When networking DIN rail modules, a distinction is made between the following control groups:

- E-Bus Groups
 ⇒ "7.5.2 E-Bus Groups" on page 60
- LocalCAN Bus Groups
 ⇒ "7.5.3 LocalCAN Bus Groups" on page 61
- WideCAN Bus Groups
 ⇒ "7.5.4 WideCAN Bus Groups" on page 62

7.5.1 CAN and E-Bus Interfaces

The M3000® modules mentioned here represent only a part of Moog’s current product range. In addition to other M3000® modules, Moog’s product range includes a large variety of accessories.

⇒ "11 Product Range" on page 118

<table>
<thead>
<tr>
<th>DIN Rail Module</th>
<th>Number of Connectors and Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC</td>
<td>LocalCAN bus: 2 Q-connectors (lateral)</td>
</tr>
<tr>
<td></td>
<td>WideCAN bus: 2 D-sub front panel connectors</td>
</tr>
<tr>
<td></td>
<td>CAN bus controller: 2</td>
</tr>
<tr>
<td></td>
<td>E-bus: 2 Q-connectors (lateral)</td>
</tr>
<tr>
<td>QDIO</td>
<td>CAN bus: 2 Q-connectors (lateral)</td>
</tr>
<tr>
<td></td>
<td>CAN bus controller: 0</td>
</tr>
<tr>
<td></td>
<td>E-bus: 2 Q-connectors (lateral)</td>
</tr>
<tr>
<td>QAIO 16/4</td>
<td>CAN bus: 2 Q-connectors (lateral)</td>
</tr>
<tr>
<td></td>
<td>CAN bus controller: 0</td>
</tr>
<tr>
<td></td>
<td>E-bus: 2 Q-connectors (lateral)</td>
</tr>
<tr>
<td>RDIO</td>
<td>CAN bus: 2 D-sub front panel connectors</td>
</tr>
<tr>
<td></td>
<td>CAN bus controller: 1</td>
</tr>
<tr>
<td></td>
<td>E-bus: 1 Q-connector (right)</td>
</tr>
</tbody>
</table>

Table 11: DIN Rail Modules with CAN and E-Bus Interfaces (Section 1 of 2)
7.5.2 E-Bus Groups

E-bus groups are formed by joining DIN rail modules together at the Q-connector. The modules within E-bus groups communicate over the internal E-bus.

"7.4 E-Bus" on page 55

Observe the following when establishing E-bus groups:

- An E-bus group can have only one master to which the slaves attach.
 "Table 8 on page 56"
- The module located farthest to the left of an E-bus group must be the master.
- The number of slaves that may be attached to a master is limited.
 "Table 8 on page 56"
- The slaves may be attached in any order.
- QCANs can be attached only at the far right because they do not have a Q-connector on the right side.
 QCANs are not slaves and may therefore be attached additionally at the right regardless of the number of slaves.
- Only the master can communicate with the slaves.
 Direct communication between the slaves of an E-bus group over the E-bus is not possible.
 "7.4.2 E-Bus Communication" on page 56
- Slaves must be attached to the master in direct succession
 Modules that do not belong to this E-bus group must not be connected to this E-bus group by the Q-connector.
- RDIOS are not permissible slaves in E-bus groups and therefore must not be attached to the right of an MSC, Q-module, or R-module.
- RTEMPs interrupt the E-bus communication because only the CAN bus is implemented on their Q-connector.
 RTEMPs may be attached to the far right or far left of an E-bus group in order to establish a CAN bus connection over the Q-connector.
- Information about arranging DIN rail modules:
 "5.1.3 Arrangement on DIN Top-Hat Rails" on page 30
7.5.2.1 Examples

E-Bus Group (MSC as E-Bus Master)

![Figure 41: E-Bus Group (MSC as E-Bus Master)](image)

Number of slaves that may be attached to the MSC:

⇒ Table 8 on page 56

E-Bus Group (RDIO as E-Bus Master)

![Figure 42: E-Bus Group (RDIO as E-Bus Master)](image)

Number of slaves that may be attached to the RDIO:

⇒ Table 8 on page 56

7.5.3 LocalCAN Bus Groups

LocalCAN bus groups are formed by joining MSCs and RTEMPs together at the Q-connectors. The modules within LocalCAN bus groups communicate over the internal LocalCAN bus.

Observe the following when establishing LocalCAN bus groups:

- The number of modules in a LocalCAN bus group is limited to 64 because CAN bus networks can only include a maximum of 64 network stations.
 ⇒ "7.3.5.3 Number of Network Stations" on page 53
- The switchable CAN bus termination resistor of the MSC can be used as a termination resistor for the LocalCAN bus group.
 ⇒ "10.15.1 CAN Bus Termination Resistor" on page 114
- If a QCAN is attached to the right, then the LocalCAN bus can be made available (using the QCAN) for other CAN bus network stations that do not belong to the LocalCAN bus group.
- Information about arranging DIN rail modules:
 ⇒ "5.1.3 Arrangement on DIN Top-Hat Rails" on page 30
7.5.3.1 Example

The internal CAN bus termination resistor is switched on for MSCs that are used as the first or last CAN bus network station of a LocalCAN bus group.

- "10.15.1 CAN Bus Termination Resistor" on page 114

The internal CAN bus termination resistor is not switched on for MSCs that are located between the first and final CAN bus network stations of a LocalCAN bus group.

CAN bus networks with M3000® modules can only include a maximum of 64 CAN bus network stations.

- "7.3.5.3 Number of Network Stations" on page 53

7.5.4 WideCAN Bus Groups

WideCAN bus groups are formed by connecting the WideCAN terminal of the MSC to additional CAN bus network stations. CAN bus network stations use the internal WideCAN bus to communicate within WideCAN bus groups.

Observe the following when establishing WideCAN bus groups:

- The switchable CAN bus termination resistor of the MSC cannot be used as a termination resistor for the WideCAN bus group. Separate pluggable CAN termination resistors must be used for this.

 - "10.15.1 CAN Bus Termination Resistor" on page 114

- Notes on project planning for CAN bus networks:

 - "7.3.5 CAN Bus Networks" on page 52
7.5.4.1 Example

D-sub connectors with CAN bus termination resistors are available from Moog.
⇒ "11.7 CAN Bus Accessories" on page 123

CAN bus networks with M3000® modules can only include a maximum of 64 CAN bus network stations.
⇒ "7.3.5.3 Number of Network Stations" on page 53

CAN bus interface cable
⇒ "7.3.6 CAN Bus Interface Cable" on page 54
8 Shutdown and Service

WARNING To avoid damage to M3000® modules or accessories, cleaning, maintenance, and repair tasks may be performed only by Moog or Moog’s authorized service agents.

Warranty and liability claims for personal and material damage are excluded when, among other reasons, they are due to unauthorized repairs or other unauthorized interventions.

[1.4 Warranty and Liability](#)

WARNING No work of any kind, such as mounting, removing, wiring, or repairs to the M3000® control system or M3000® modules may be performed while the control system or the modules are in operation!

There is a danger of:
- Uncontrolled movements
- Permanent damage
- Malfunctions

Before performing any work on the M3000® control system or M3000® modules, it is essential that the system be stopped and the power supply disconnected. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

WARNING The M3000® control system and M3000® modules must not come into direct contact with liquids. Danger of short-circuit!

If they do come into direct contact with a liquid, immediately disconnect the power supply! Before bringing the system back into operation, it is essential that all affected components are completely dry and have been inspected by a suitably qualified technician.

8.1 Shutdown

WARNING If an M3000® module is to be taken out of operation, the entire system must always be shut down and disconnected from all power supplies. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!

The M3000® module must be protected against unintentional restarting!

If the M3000® module is connected to other devices and/or facilities, always consider the full consequences and take appropriate precautions before switching off the module.
8.2 Service

WARNING
To avoid damage to M3000® modules or accessories, cleaning, maintenance, and repair tasks may be performed only by Moog or Moog's authorized service agents.

Warranty and liability claims for personal and material damage are excluded when, among other reasons, they are due to unauthorized repairs or other unauthorized interventions.

"1.4 Warranty and Liability" on page 3

CAUTION
To avoid damage to the internal components, never attempt to open M3000® modules!

8.2.1 Maintenance/Servicing

M3000® modules are maintenance-free. They do not contain any components (such as batteries) that must be maintained or replaced.

8.2.2 Repair

Only Moog and Moog's authorized service stations perform **Moog Authentic Repairs**. Only Moog and Moog's authorized service agents can access the required and most up-to-date specifications. These specifications make it possible to restore the M3000® modules' original performance and ensure the same high reliability and long service life of the M3000® modules after repairs are completed.

![Repair Seal](image)

Moog's repair seal is the guarantee that a Moog Authentic Repair has been carried out.

- If Moog receives a repair order for defective M3000® modules, Moog and Moog's authorized service agents reserve the right to repair the defective module or, alternatively, to replace the defective module with a module of identical or compatible specifications.

- If Moog receives a repair order for defective M3000® modules, Moog and Moog's authorized service agents accept no liability for software and data installed by the customer. Like new modules, repaired modules or replacement modules are delivered only with a bootloader.
9 Transportation and Storage

WARNING Maintain, under all circumstances, the required environmental conditions specified for transportation and storage of the control system M3000® or M3000® modules.

"9.1 Environmental Conditions" on page 66

This ensures fault-free, reliable, and safe operation.

CAUTION

To avoid condensation, do not start M3000® modules until they have reached ambient temperature.

CAUTION

To avoid damage, M3000® modules and accessories must be transported and stored in their original packaging.

Warranty and liability claims for personal or material damage will be excluded when they are the result of, among other things, storing or transporting M3000® modules or accessories outside of their original packaging.

"1.4 Warranty and Liability" on page 3

9.1 Environmental Conditions

Ambient temperature (IEC 61131-2)

–25 °C to +70 °C (–13 °F to +158 °F)

Relative air humidity (IEC 61131-2)

5 % to 95 % non-condensing

Contamination level (IEC 60664)

2

Resistance to corrosion (IEC 60068)

No protection

Air pressure (IEC 61131-2)

≤ 70 kPa (corresponds to an elevation of ≤ 3,000 m (3,280 yd))

Drop height (freefall in the original packaging) (IEC 60068-2-31)

≤ 1 m (39 in)
10 MSC (Moog Servo Controller)

The MSC is a programmable multi-axis controller that facilitates rapid and precise control of process variables such as position, speed, and power. It is suitable for use with both electric and hydraulic drives.

The MSC is programmed and configured with the MACS development environment (complies with IEC 61131).

⇒ "3.5 Application Programs" on page 24

10.1 Performance Characteristics

10.1.1 Interfaces

The MSC provides the following interfaces:

- 2 Serial interfaces
 - «MACS» front panel connector for use as a programming interface
 - «SIO» front panel connector for use as a free user interface
 ⇒ "10.16 Serial Interfaces" on page 115
- 1 E-bus interface on both lateral Q-connectors (for establishing E-bus groups)
 ⇒ "10.14 E-Bus Interface" on page 112
- 2 CAN bus interfaces
 - WideCAN: 2 front panel connectors «WCAN»
 (connected internally 1:1)
 - LocalCAN: 2 internally on both lateral Q-connectors
 ⇒ "10.15 CAN Bus Interfaces" on page 113
- 1 Ethernet interface on the front panel
 - «Ethernet» front panel connector
 ⇒ "10.5.1.2 Ethernet Communication Interface" on page 81
- 1 Field bus interface on the front panel
 - «F-Bus» front panel connector
 (provided for optional field bus extension, such as Profibus)
- 2 Digital sensor interfaces according to TIA/EIA 422 (previously RS 422) for position transducers or shaft encoders with SSI interface or incremental sensor signals
 ⇒ "10.13 Digital Sensor Interfaces" on page 108
10.1.2 I/Os (Inputs/Outputs)

The MSC provides the following I/Os:

- **8 Digital I/Os**
 - each individually configurable as an input or an output
 - "10.9 Digital I/Os" on page 91

- **2 Analog outputs**
 - each with a voltage output stage ±10 V and an additional current output stage, configurable as: ±10 mA, ±50 mA or 4–20 mA (each nominal)
 - "10.10 Analog Outputs" on page 99

- **1 Reference voltage output 10 V**
 - "10.11 Reference Voltage Output" on page 101

- **8 Analog inputs**
 - configurable as: ±10 V, ±10 mA or 4–20 mA (each nominal)
 - "10.12 Analog Inputs" on page 102

- **1 Digital output 'Outputs Enabled'**
 - "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116

The I/Os are configured in the PLC configuration of the MACS development environment.

10.1.3 Safety Functions

The MSC provides the following safety functions:

- **Watchdog** for monitoring the functionality of hardware and software
 - "10.17.1 Watchdog" on page 115

- **Output 'Outputs Enabled'** for signaling the activation of all outputs as well as E-bus communication
 - "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116

10.2 General Specifications

Dimensions

- Overall width/module width × H × T in mm (in):
 - 160/149 × 170 × 85.5 (6.3/5.87 × 6.69 × 3.37)
 - "Figure 46 on page 69"

- Dimensions of the other DIN rail modules:
 - "5.1.2 Dimensions" on page 29

Weight

- Approx. 1 kg (2.2 lb) without plug-in terminal strips, with license key

Processor

- PowerPC CPU 40 MHz, 32 Bit, RISC architecture with floating point unit

Memory

- 4 MB flash EEPROM
- 2/4 MB RAM

Data retention

- > 10 Years for all data that is saved in the flash EEPROM, i.e., boot project, RETAIN variables and error messages

Behavior during power supply failure

- The data to be saved during a power supply failure is specified in the MACS development environment.
10.2.1 Dimensions

![Dimensions of the MSC](image)

10.2.2 Environmental Conditions

WARNING Maintain under all circumstances the required environmental conditions specified for the control system M3000® or M3000® modules. This ensures fault-free, reliable, and safe operation.

WARNING It is not permissible to operate the M3000® control system or M3000® modules in a potentially explosive environment.

WARNING The M3000® control system and M3000® modules must not come into direct contact with liquids. Danger of short-circuit! If they do come into direct contact with a liquid, immediately disconnect the power supply! Before bringing the system back into operation, it is essential that all affected components are completely dry and have been inspected by a suitably qualified technician.
10.2.2.1 Climatic Conditions

Environmental Conditions: Climatic Conditions

Ambient temperature (IEC 61131-2)

For operation (when installed properly): +5 °C to +55 °C

(+41 °F to +131 °F)

Average temp. over 24 hours: max. +50 °C (+122 °F)

For transportation and storage (in the original packaging):

−25 °C to +70 °C

(−13 °F to +158 °F)

Relative air humidity (IEC 61131-2)

For operation: 10 % to 95 % non-condensing

For transportation and storage (in the original packaging): 5 % to 95 % non-condensing

Contamination level (IEC 60664)

2

Resistance to corrosion (IEC 60068)

No protection

Operating Elevation (IEC 61131-2)

≤ 2,000 m (2,187 yd) above MSL

Air pressure for transportation (IEC 61131-2)

≥ 70 kPa (corresponds to an elevation of ≤ 3,000 m (3,280 yd))

10.2.2.2 Mechanical Conditions and Requirements

Environmental Conditions: Mechanical Conditions and Requirements

Sinusoidal oscillations (IEC 60068-2-6)

10 Hz ≤ f < 57 Hz: 0.0357 mm (0.0014 in) continual amplitude

0.075 mm (0.00295 in) random amplitude

57 Hz ≤ f < 150 Hz: 0.5 g continuous constant acceleration

1.0 g random constant acceleration

f > 150 Hz: not defined

Shock (IEC 60068-2-27)

Random peaks up to 15 g longer than 11 ms, half-sine wave in each of the three orthogonal axes

Drop height (freefall in the original packaging) (IEC 60068-2-31)

≤ 1 m (39 in)

Protection class (IEC 60529)

IP20

10.2.2.3 Electrical Conditions and Requirements

Environmental Conditions: Electrical Conditions and Requirements

Power supply

24 V DC

(Safety Extra-Low Voltage (SELV) according to DIN EN 60950-1)

Specified voltage range: 18–36 V DC

⇒ "6.2 Power Supply" on page 38

Insulation resistance

Rated voltage: 0–50 V DC

Test voltage for 2,000 m (2,187 yd) operating elevation: 500 V DC
10.3 Block Diagram

Figure 47: Block Diagram of the MSC

1) Hardware option. When ordering the MSC, the type of the field bus interface must be specified.

2) Available serial interfaces: TIA/EIA 232 (previously RS 232), TIA/EIA 422 (previously RS 422) or TIA/EIA 485 (previously RS 485)

3) Wire fault monitoring of the analog current outputs
10.4 View of the Module and Terminal Assignment

Figure 48: Front View of the MSC

Figure 49: Front Panel of the MSC
10.4.1 Terminal Assignment

<table>
<thead>
<tr>
<th>Connector</th>
<th>No.</th>
<th>Assignment</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1</td>
<td>L1+</td>
<td>Power supply for the MSC's internal electronics (24 V DC SELV)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>L1+</td>
<td>Power supply for the MSC's internal electronics (24 V DC SELV)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>M1</td>
<td>Ground for the internal electronics' power supply</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>M1</td>
<td>Ground for the internal electronics' power supply</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>L2+</td>
<td>Power supply for the MSC's digital I/Os (24 V DC SELV)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>L2+</td>
<td>Power supply for the MSC's digital I/Os (24 V DC SELV)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>M2</td>
<td>Ground for the digital I/Os' power supply</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>OutEN</td>
<td>Digital output 'Outputs Enabled'</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>CLK1+</td>
<td>TIA/EIA 422 output, SSI sensor signal 1 clock+</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>CLK1-</td>
<td>TIA/EIA 422 output, SSI sensor signal 1 clock-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>A1+</td>
<td>TIA/EIA 422 input, incremental sensor signal 1 A+ or SSI sensor signal 1 data+</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>A1-</td>
<td>TIA/EIA 422 input, incremental sensor signal 1 A- or SSI sensor signal 1 data-</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>B1+</td>
<td>TIA/EIA 422 input, incremental sensor signal 1 B+ or SSI sensor signal 1 slave clock+</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>B1-</td>
<td>TIA/EIA 422 input, incremental sensor signal 1 B- or SSI sensor signal 1 slave clock-</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Z1+</td>
<td>TIA/EIA 422 input, incremental sensor signal 1 Z+</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Z1-</td>
<td>TIA/EIA 422 input, incremental sensor signal 1 Z-</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>DGND</td>
<td>Ground for the digital sensor interface</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td>X2</td>
<td>19</td>
<td>I/O1</td>
<td>Digital I/O 1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>I/O2</td>
<td>Digital I/O 2</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>I/O3</td>
<td>Digital I/O 3</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>I/O4</td>
<td>Digital I/O 4</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>I/O5</td>
<td>Digital I/O 5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>I/O6</td>
<td>Digital I/O 6</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>I/O7</td>
<td>Digital I/O 7</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>I/O8</td>
<td>Digital I/O 8</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>CLK2+</td>
<td>TIA/EIA 422 output, SSI sensor signal 2 clock+</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>CLK2-</td>
<td>TIA/EIA 422 output, SSI sensor signal 2 clock-</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>A2+</td>
<td>TIA/EIA 422 input, incremental sensor signal 2 A+ or SSI sensor signal 2 data+</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>A2-</td>
<td>TIA/EIA 422 input, incremental sensor signal 2 A- or SSI sensor signal 2 data-</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>B2+</td>
<td>TIA/EIA 422 input, incremental sensor signal 2 B+ or SSI sensor signal 2 slave clock+</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>B2-</td>
<td>TIA/EIA 422 input, incremental sensor signal 2 B- or SSI sensor signal 2 slave clock-</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Z2+</td>
<td>TIA/EIA 422 input, incremental sensor signal 2 Z+</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Z2-</td>
<td>TIA/EIA 422 input, incremental sensor signal 2 Z-</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>DGND</td>
<td>Ground for the digital sensor interface</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
</tbody>
</table>

Table 12: Terminal Assignment of MSC's Connectors (Section 1 of 5)
<table>
<thead>
<tr>
<th>Connector</th>
<th>No.</th>
<th>Assignment</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>X3</td>
<td>46</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Ao1a</td>
<td>Analog voltage output 1 (referenced on AGND) ⇒ "10.10 Analog Outputs" on page 99</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Ao1b</td>
<td>Analog current output 1 (referenced on AGND)</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>Ao2a</td>
<td>Analog voltage output 2 (referenced on AGND) ⇒ "10.10 Analog Outputs" on page 99</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>Ao2b</td>
<td>Analog current output 2 (referenced on AGND)</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td>X4</td>
<td>55</td>
<td>Ai1+</td>
<td>Analog input 1 (not inverting) ⇒ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>C1a</td>
<td>Connect the current load (connect with C1b)</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>C1b</td>
<td>Connect the current load (connect with C1a)</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>Ai1-</td>
<td>Analog input 1 (inverting)</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>Ai2+</td>
<td>Analog input 2 (not inverting) ⇒ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>C2a</td>
<td>Connect the current load (connect with C2b)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>C2b</td>
<td>Connect the current load (connect with C2a)</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>Ai2-</td>
<td>Analog input 2 (inverting)</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>Ai3+</td>
<td>Analog input 3 (not inverting) ⇒ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>C3a</td>
<td>Connect the current load (connect with C3b)</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>C3b</td>
<td>Connect the current load (connect with C3a)</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>A13-</td>
<td>Analog input 3 (inverting)</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
</tbody>
</table>

Table 12: Terminal Assignment of MSC's Connectors (Section 2 of 5)
<table>
<thead>
<tr>
<th>Connector</th>
<th>No.</th>
<th>Assignment</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>X5</td>
<td>73</td>
<td>Ai4+</td>
<td>Analog input 4 (not inverting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⇔ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>C4a</td>
<td>Connect the current load (connect with C4b)</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>C4b</td>
<td>Connect the current load (connect with C4a)</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>Ai4-</td>
<td>Analog input 4 (inverting)</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>Ai5+</td>
<td>Analog input 5 (not inverting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⇔ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>C5a</td>
<td>Connect the current load (connect with C5b)</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>C5b</td>
<td>Connect the current load (connect with C5a)</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>Ai5-</td>
<td>Analog input 5 (inverting)</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>Ai6+</td>
<td>Analog input 6 (not inverting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⇔ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>C6a</td>
<td>Connect the current load (connect with C6b)</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>C6b</td>
<td>Connect the current load (connect with C6a)</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>Ai6-</td>
<td>Analog input 6 (inverting)</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td>X6</td>
<td>91</td>
<td>REF</td>
<td>Reference voltage output 10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⇔ "10.11 Reference Voltage Output" on page 101</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>Ai7+</td>
<td>Analog input 7 (not inverting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⇔ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>C7a</td>
<td>Connect the current load (connect with C7b)</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>C7b</td>
<td>Connect the current load (connect with C7a)</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>Ai7-</td>
<td>Analog input 7 (inverting)</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>REF</td>
<td>Reference voltage output 10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⇔ "10.11 Reference Voltage Output" on page 101</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>Ai8+</td>
<td>Analog input 8 (not inverting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>⇔ "10.12 Analog Inputs" on page 102</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>C8a</td>
<td>Connect the current load (connect with C8b)</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>C8b</td>
<td>Connect the current load (connect with C8a)</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>Ai8-</td>
<td>Analog input 8 (inverting)</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>AGND</td>
<td>Ground for the analog I/Os</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>SHLD</td>
<td>Optional shield</td>
</tr>
</tbody>
</table>

Table 12: Terminal Assignment of MSC's Connectors (Section 3 of 5)
Table 12: Terminal Assignment of MSC's Connectors (Section 4 of 5)

<table>
<thead>
<tr>
<th>Connector</th>
<th>No.</th>
<th>Assignment</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CAN-L</td>
<td>CAN-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>DGND</td>
<td>Ground for the CAN bus interface</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>CAN-H</td>
<td>CAN+</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CAN-L</td>
<td>CAN-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>DGND</td>
<td>Ground for the CAN bus interface</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>CAN-H</td>
<td>CAN+</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Rx</td>
<td>TIA/EIA 232 receive data</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Tx</td>
<td>TIA/EIA 232 send data</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DGND</td>
<td>Ground for the TIA/EIA 232 interface</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Rx+</td>
<td>TIA/EIA 422 Receive data+</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Tx+</td>
<td>TIA/EIA 422 Send data+</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DGND</td>
<td>Ground for the TIA/EIA 422 interface</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Rx-</td>
<td>TIA/EIA 422 Receive data-</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Data+</td>
<td>TIA/EIA 485 data+ (bidirectional send and receive data)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Data-</td>
<td>TIA/EIA 485 data- (bidirectional send and receive data)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DGND</td>
<td>Ground for the TIA/EIA 485 interface</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- WCAN (WideCAN) indicates the connector uses the WideCAN protocol.
- SIO TIA/EIA 232 indicates the connector uses the TIA/EIA 232 protocol.
- SIO TIA/EIA 422 indicates the connector uses the TIA/EIA 422 protocol.
- SIO TIA/EIA 485 indicates the connector uses the TIA/EIA 485 protocol.
10.4.2 LEDs

<table>
<thead>
<tr>
<th>Area</th>
<th>LED</th>
<th>Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>L1+</td>
<td>L1+/M1 and internal +5 V ok</td>
<td>Illuminates when the power supply for the MSC's internal electronics is</td>
</tr>
<tr>
<td></td>
<td>TRM</td>
<td>Termination resistor on LocalCAN</td>
<td>OK and the internal power pack is supplying +5 V.</td>
</tr>
<tr>
<td></td>
<td>I/O1</td>
<td>Internal status of the digital I/O 1</td>
<td>*"6.2 Power Supply" on page 38</td>
</tr>
<tr>
<td></td>
<td>I/O2</td>
<td>Internal status of the digital I/O 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O3</td>
<td>Internal status of the digital I/O 3</td>
<td>*"10.9.1 Display of the Operational State" on page 91</td>
</tr>
<tr>
<td></td>
<td>I/O4</td>
<td>Internal status of the digital I/O 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O5</td>
<td>Internal status of the digital I/O 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O6</td>
<td>Internal status of the digital I/O 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O7</td>
<td>Internal status of the digital I/O 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O8</td>
<td>Internal status of the digital I/O 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WCAN</td>
<td>WideCAN transmission activity</td>
<td>Flashes in synchronization with the data that the MSC is sending over the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WideCAN interface.</td>
</tr>
</tbody>
</table>

Table 13: LEDs of the MSC (Section 1 of 2)
<table>
<thead>
<tr>
<th>Area</th>
<th>LED</th>
<th>Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>LCAN</td>
<td>LocalCAN transmission activity</td>
<td>Flashes in synchronization with the data that the MSC is sending over the LocalCAN interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>◦ "10.15 CAN Bus Interfaces" on page 113</td>
</tr>
<tr>
<td></td>
<td>EBus</td>
<td>E-bus transmission activity</td>
<td>Illuminates when the MSC is sending data over the E-bus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>◦ "7.4.3 MSC as E-Bus Master" on page 56</td>
</tr>
<tr>
<td></td>
<td>OutEN</td>
<td>Outputs enabled</td>
<td>Illuminates when all outputs and the E-bus communication are under the control of the application program.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>◦ "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116</td>
</tr>
<tr>
<td></td>
<td>Aux1</td>
<td>Activated by application program</td>
<td>Illuminates when the application program activates the LED.</td>
</tr>
<tr>
<td></td>
<td>Aux2</td>
<td>Activated by application program</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Ao1b</td>
<td>Wire fault in the analog current output 1</td>
<td>Illuminates when no receiver is attached to the corresponding current output, the load resistance is too great, or there is a wire fault.</td>
</tr>
<tr>
<td></td>
<td>Ao2b</td>
<td>Wire fault in the analog current output 2</td>
<td>◦ "Wire fault monitoring of the analog current outputs" on page 101</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>Wire fault in the digital sensor input A1</td>
<td>Illuminates when no receiver is attached to the corresponding digital sensor interface or when there is a wire fault.</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>Wire fault in the digital sensor input B1</td>
<td>◦ "10.13.1.1 Wire Fault Display LEDs" on page 108</td>
</tr>
<tr>
<td></td>
<td>Z1</td>
<td>Wire fault in the digital sensor input Z1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>Wire fault in the digital sensor input A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>Wire fault in the digital sensor input B2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z2</td>
<td>Wire fault in the digital sensor input Z2</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Rx1</td>
<td>SIO receiver activity</td>
<td>Illuminates when the MSC is receiving data over the SIO interface.</td>
</tr>
<tr>
<td></td>
<td>Tx1</td>
<td>SIO transmission activity</td>
<td>Illuminates when the MSC is sending data over the SIO interfaces. If «Tx2» illuminates in addition to «Tx1», this indicates an error during loading of the hardware driver.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>◦ Table 14 on page 79</td>
</tr>
<tr>
<td></td>
<td>Rx2</td>
<td>MACS receiver activity</td>
<td>Illuminates when the MSC is receiving data over the MACS interface.</td>
</tr>
<tr>
<td></td>
<td>Tx2</td>
<td>MACS transmission activity</td>
<td>Illuminates when the MSC is sending data over the MACS interface. If «Tx1» illuminates in addition to «Tx2», this indicates an error during loading of the hardware driver.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>◦ Table 14 on page 79</td>
</tr>
<tr>
<td>User</td>
<td>LED1</td>
<td>Activated by application program or error display</td>
<td>As long as LED «Error» does not illuminate, the application program can activate these LEDs (provided that the MSC has successfully started and that the application program has started). The states that these LEDs will indicate while the application program is running are set in the application program.</td>
</tr>
<tr>
<td></td>
<td>LED2</td>
<td>Activated by application program or error display</td>
<td>If «Error» illuminates or flashes in addition to these LEDs, this indicates MSC's elementary operational states or errors.</td>
</tr>
<tr>
<td></td>
<td>LED3</td>
<td>Activated by application program or error display</td>
<td>◦ Table 14 on page 79</td>
</tr>
<tr>
<td></td>
<td>Error</td>
<td>Error display</td>
<td>Illuminates when there is an error. The type of error is specified in «LED1», «LED2», and «LED3».</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>◦ Table 14 on page 79</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Link</td>
<td>Ethernet link pulse</td>
<td>Illuminates when the Ethernet link pulse is available</td>
</tr>
<tr>
<td></td>
<td>LAN</td>
<td>Ethernet activity</td>
<td>Illuminates when the MSC is receiving or sending data over the Ethernet interface.</td>
</tr>
<tr>
<td>F-Bus</td>
<td>D1</td>
<td>The LEDs «D1» through «D7» are provided for optional field bus extensions, such as Profibus. The assignment of the LEDs «D1» through «D7» will depend on the field bus type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13: LEDs of the MSC (Section 2 of 2)
10.4.2.1 Display of Elementary Operational States and Errors

<table>
<thead>
<tr>
<th>State</th>
<th>Explanation</th>
<th>User LEDs</th>
<th>Status LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LED1</td>
<td>LED2</td>
</tr>
<tr>
<td>Ready</td>
<td>The MSC was started successfully. The user LEDs «LED1», «LED2» and «LED3» are now available for the application program.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Error</td>
<td>An error occurred during starting of the run-time system. If this error occurs, please contact Moog or Moog's authorized service agents.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Error</td>
<td>An error occurred during loading of the TPU. If this error occurs, please contact Moog or Moog's authorized service agents.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Load procedures</td>
<td>FPGA was loaded successfully.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TPU was loaded successfully</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Initialization</td>
<td>Initialization of the flash file system.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>The initialization phase after the firmware loads or updates can take up to several minutes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The MSC must not be switched off or reset during the initialization phase. If it is switched off or reset during the initialization phase, the firmware must be reloaded.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>An error occurred during loading of the hardware driver. If this error occurs, please contact Moog or Moog's authorized service agents.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 14: LEDs for Displaying Elementary Operational States and Errors after Switching on or Resetting the MSC

When the MSC starts successfully, FPGA and TPU will load automatically and the flash file system will initialize automatically. The load proceeds so quickly that it is difficult to see the user LEDs «LED1» and «LED2» illuminate with the naked eye.

It is possible to observe the user LEDs «LED1», «LED2» and «LED3» illuminate during the initialization phase.
10.5 Programming and Configuration

The MACS development environment is needed to create IEC 61131 application programs and configure the MSC.

⇒ "3.5 Application Programs" on page 24

10.5.1 Communication Between MSC and MACS

WARNING The MSC's operational state can be altered with the MACS development environment when the MSC is connected online with MACS.

This can be done by means of the following actions, for example:

• Stopping or resetting the program
• Setting breakpoints
• Activating the single step mode
• Downloading application programs
• Writing or forcing values

Therefore, the operator must always consider the effects and take appropriate precautions before altering the operational state of the MSC with MACS.

The MSC can use the following interfaces to communicate with the PC on which MACS is installed:

• **MACS interface** according to TIA/EIA 232 (previously RS 232)
 - with «MACS» front panel connector of the MSC
 ⇒ "10.5.1.1 MACS Communication Interface" on page 80
 ⇒ "7.2.1 TIA/EIA 232 Interface Cables" on page 48

• **Ethernet interface**
 - with «Ethernet» front panel connector of the MSC
 ⇒ "7.1 Ethernet" on page 46
 ⇒ "10.5.1.2 Ethernet Communication Interface" on page 81

The MACS and Ethernet interface are configured in the PLC configuration of the MACS development environment.

Refer to the documentation of the MACS development environment for detailed information about this.

10.5.1.1 MACS Communication Interface

Settings in the MACS development environment (communication parameters)

Port = COM1 (depending on which PC serial interface is selected)
Baud rate = 38400 Bit/s
Parity = No
Stop Bits = 1
Motorola Byteorder = Yes

Interface cables

⇒ "7.2 Serial TIA/EIA Interface Cables" on page 47
10.5.1.2 Ethernet Communication Interface

Settings in the MACS development environment (communication parameters)
- IP address at delivery = 10.49.40.1 (identical for all MSCs!)
- Port = 1200
- TargetId = 0
- Motorola Byteorder = Yes

Each IP address may be used only once within a network. Therefore, when operating the MSC within a network, the IP address should be changed only after consulting with the responsible system administrator.

The IP address is saved in the license key.
⇒ "10.6 License Key" on page 81

Interface cables
⇒ "7.1.3 Ethernet Interface Cables" on page 47

10.6 License Key

WARNING The license key of the MSC must be protected from electrostatic discharges!

Electrical discharges might damage the license key or delete the contents of the license key's memory.

WARNING The license key may be inserted or removed only when the MSC is powered down!

Attempting to insert or remove the license key during operation might damage the license key or the MSC permanently.

WARNING The license key must always remain inserted while the MSC is in operation. Otherwise, the MSC will not function.

If the license key is removed during operation, the application program will stop after a few minutes. If the MSC is connected online to the MACS development environment, a corresponding error message will appear in MACS. In addition, the digital output 'Outputs Enabled' will be switched to the 0 state, thereby disabling all of MSC's digital and analog outputs and terminating the E-bus communication.
⇒ "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116

After switching off the MSC and inserting the license key, the MSC can be brought back into operation.
10.6.1 Run-Time License and Accessible Libraries

The run-time license of the MSC is saved in the license key.

The accessible MACS libraries also depend on the license key. If the application program attempts to access a MACS library that is not released by the license key used, the application program will not be able to start.

Detailed information about the MACS libraries accessible with the various license keys:

Table 27 on page 121

10.6.2 CANopen Node-ID and IP Address

The CANopen node-ID of the MSC’s CAN bus interfaces and the IP address of the MSC’s Ethernet interface are saved in the license key.

The CANopen node-ID and IP address can be set or modified in the following places:

- In the application program
- With the PLC browser in the MACS development environment

The IP address is read from the license key only when the power supply is switched on or when the MSC is reset.

10.6.3 Mounting and Removing

The following tool is required to mount and remove the license key:

- 3 mm screwdriver

WARNING

The license key may be inserted or removed only when the MSC is powered down!

Attempting to insert or remove the license key during operation might damage the license key or the MSC permanently.
WARNING If an M3000® module is to be taken out of operation, the entire system must always be shut down and disconnected from all power supplies. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!
The M3000® module must be protected against unintentional restarting!

If the M3000® module is connected to other devices and/or facilities, always consider the full consequences and take appropriate precautions before switching off the module.

CAUTION When using a screwdriver, use caution to avoid slipping and causing personal injury or damage to the MSC.

Procedure for mounting the license key:

1. Switch off the MSC power supply.
2. Insert the license key into the slot labeled «LK» (far right on the front panel of the MSC).
3. Fix the license key in place by carefully tightening the attachment screws.
 Incorrectly tightened attachment screws might cause license key errors.

10.6.3.3 Removing the License Key

WARNING The license key may be inserted or removed only when the MSC is powered down!
Attempting to insert or remove the license key during operation might damage the license key or the MSC permanently.

WARNING If an M3000® module is to be taken out of operation, the entire system must always be shut down and disconnected from all power supplies. Therefore, all power supplies must be switched off, including those from attached peripherals such as externally supplied transmitters, programming devices, etc.!
The M3000® module must be protected against unintentional restarting!

If the M3000® module is connected to other devices and/or facilities, always consider the full consequences and take appropriate precautions before switching off the module.

CAUTION When using a screwdriver, use caution to avoid slipping and causing personal injury or damage to the MSC.
Procedure for removing the license key:
1. If it is running, stop the application program in the MACS development environment.
2. Switch off the power supply for the MSC.
3. Loosen the license key’s attachment screws.
4. Remove the license key from the slot labeled «LK» (far right on the front panel of the MSC).

10.7 Reset Button

To avoid damage, use only a suitable, electrically non-conductive tool to actuate the reset button on the front panel of the MSC. A light pressure is sufficient.

WARNING
If the most recent status in the online mode (MACS logged in) was 'Start' before the MSC was switched off or reset, the boot project will always be started after the MSC is switched back on or reset.

This will occur regardless of which application program was previously running.
In other words, the application program that will be started automatically after the MSC is switched on or reset might be different from the application program that was executing immediately prior.

Pressing the reset button will reset the MSC.
The processor will stop as soon as the reset button is pressed. No variables will be saved at that time.
When the reset button is released, the MSC will behave as if the power supply has been switched on.

In addition, the MSC can be reset with the MACS development environment. Refer to the documentation of the MACS development environment for detailed information about this.
10.8 Power Supply

DANGER The L2+/M2 power supply terminals of the MSC type D136E001-001 are not protected against reverse polarity (in deviation from the requirements of IEC 61131-2). Reverse polarity on terminals L2+ and M2 will lead to permanent damage to the MSC!

The L2+/M2 power supply terminals of the other MSC types are protected against reverse polarity.
The L1+/M1 power supply terminals of all MSC types and the power supply terminals of the other M3000® modules are protected against reverse polarity.
If the polarity of these power supply terminals is reversed, the modules will not function.

WARNING M3000® modules must be protected from overvoltages and/or reverse energization from the sensor to the module!

There is a danger of:
- Permanent damage by overheating or fire
- Malfunctions

M3000® modules must have the correct voltage, polarity, and terminal assignments.

Additional information about the power supply
⇒ "10.2.2.3 Electrical Conditions and Requirements" on page 70
⇒ "6.2 Power Supply" on page 38

10.8.1 Behavior at Switching on and Switching off

The following internal data will be saved in the flash EEPROM of the MSC:
- Values of the RETAIN variables
- Boot projects
- Error messages

The MSC provides an energy reserve used to save this data, even when the power supply for the MSC's internal electronics (L1+/M1) is switched off or has failed.
There is no battery buffered memory area. The MSC is maintenance-free.

WARNING If the most recent status in the online mode (MACS logged in) was 'Start' before the MSC was switched off or reset, the boot project will always be started after the MSC is switched back on or reset.

This will occur regardless of which application program was previously running.
In other words, the application program that will be started automatically after the MSC is switched on or reset might be different from the application program that was executing immediately prior.
⇒ "10.8.1.3 Examples" on page 87
Application programs can be saved and executed in the MSC in the following manner:

- As a boot project in the flash EEPROM
- In RAM

An application program saved as a boot project will be loaded into RAM whenever the MSC's power supply is switched on or when the MSC is reset.

An application program that is only executed in RAM without being saved as a boot project will not be saved in the MSC when it is switched off or when the power supply fails.

After the power supply is switched back on, the application program must be downloaded once more from the MACS development environment!

10.8.1.1 Switching on the Power Supply

WARNING If the most recent status in the online mode (MACS logged in) was 'Start' before the MSC was switched off or reset, the boot project will always be started after the MSC is switched back on or reset.

This will occur regardless of which application program was previously running.

In other words, the application program that will be started automatically after the MSC is switched on or reset might be different from the application program that was executing immediately prior:

› "10.8.1.3 Examples" on page 87

After the power supply for the MSC's internal electronics (L1+/M1) is switched on, the MSC will perform the following actions:

1. The boot project (if one exists) is loaded into RAM.
2. The values of the RETAIN variables are loaded (assuming that variables of this type are used).
3. The boot project starts (if one exists and the most recent status in the online mode (MACS logged in) was 'Start').

After these actions are complete, the MSC is ready to communicate with the MACS development environment.

10.8.1.2 Switching off or Failure of the Power Supply

The low voltage detection of the MSC ensures that the internal module control state will always be 'RUN', 'SAVE', 'IDLE' or 'OFF', even after the power supply for the MSC's internal electronics (L1+/M1) is switched off or fails.

Explanations of these states: › table 15 on page 88

Behavior of the MSC after the power supply for the MSC's internal electronics (L1+/M1) is switched off or fails:

› "10.8.2.1 Power Failures" on page 88
› "10.8.2.2 Long Duration Low Voltage" on page 89
› "10.8.2.3 Short Duration Low Voltage" on page 90
10.8.1.3 Examples

For a new or changed application program to start automatically after the power supply for the MSC's internal electronics is switched on or the MSC is reset, it must be saved as a boot project. In addition, the most recent status in the online mode (MACS logged in) must have been 'Start'.

Example 1
An application program will be loaded and started on an MSC which has no boot project saved in it. However, the application program will not be saved as a boot project.

Behavior after switch-off or reset:
The next time the power supply is switched back on or the MSC is reset, no application program will be started because nothing has been saved as a boot project.

Example 2
An application program is saved in the MSC as a boot project. After saving, it is changed in the MACS development environment and is executed in RAM. The changed application program is not saved as a boot project. The most recent status in online mode (MACS logged in) is 'Start'.

Behavior after switch-off or reset:
The next time the power supply is switched on or the MSC is reset, the changed application program will not be loaded; instead, the saved boot project will be loaded and started.

Example 3
There is already a boot project on the MSC. A new application program is created in the MACS development environment and is loaded and started on the MSC. The application program is not saved as a boot project. The most recent status in online mode (MACS logged in) is 'Start'.

Behavior after switch-off or reset:
The next time the power supply is switched on or the MSC is reset, the previously executed application program will not be loaded; instead, the saved boot project will be loaded and started.

10.8.2 Low Voltage Detection

The MSC provides an integrated low voltage detection for the power supply for the MSC's internal electronics (L1+/M1). If the power supply is interrupted for longer than 5 ms, the low voltage detection will respond. The threshold limit is < 18 V (typ. 16 V). If the voltage falls below the threshold limit, the MSC will go into the 'SAVE' state.

The low voltage detection of the MSC ensures that the internal module control state will always be 'RUN', 'SAVE', 'IDLE' or 'OFF', even after the power supply for the MSC's internal electronics (L1+/M1) is switched off or fails. Explanations of these states: table 15 on page 88
10.8.2.1 Power Failures

If the input voltage \(U \) fails (falls to zero and does not recover), the MSC will behave in the manner shown below.

<table>
<thead>
<tr>
<th>State</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN</td>
<td>Normal program sequence according to the programmed application program.</td>
</tr>
<tr>
<td>SAVE</td>
<td>The application program is stopped. However, this does not guarantee that the current cycle is terminated. In other words, the program execution is stopped at the point where the loss of power supply is detected. All outputs are disabled, the output 'Outputs Enabled' is switched to the 0 state, and the LED «OutEN» extinguishes.</td>
</tr>
<tr>
<td>IDLE</td>
<td>Waiting to restart according to the programmed application program (as long as the energy reserve is sufficient).</td>
</tr>
<tr>
<td>OFF</td>
<td>MSC inactive</td>
</tr>
</tbody>
</table>

Table 15: Possible States of the Internal Module Control of the MSC

As long as the input voltage is above the threshold limit, the MSC will be in the 'RUN' state, i.e., the application program will be executed. Explanations of the states: ⇨ table 15 on page 88

1. If the voltage falls below the threshold limit, the MSC will go into the 'SAVE' state.
2. As soon as the internal data is saved, the MSC will go into the 'IDLE' state.
3. When the internal energy reserve is exhausted, the MSC will go into the 'OFF' state.
10.8.2.2 Long Duration Low Voltage

A low voltage condition is designated as long duration when the input voltage U falls below the threshold limit and then does not exceed 18 V until the internal data has been saved in the flash EEPROM.

The MSC will behave in the manner shown below during long duration low voltage conditions:

![States of the MSC During Long Duration Low Voltage Conditions](image)

1. As long as the input voltage is above the threshold limit, the MSC will be in the 'RUN' state, i.e., the application program will be executed.

 Explanations of the states: [table 15 on page 88](#)

2. If the voltage falls below the threshold limit, the MSC will go into the 'SAVE' state.

3. As soon as the internal data is saved, the MSC will go into the 'IDLE' state. As long as the input voltage does not exceed 18 V, the MSC will remain in the 'IDLE' state and the outputs will remain disabled.

4. When the input voltage again exceeds 18 V, the MSC will behave as if the power supply had been switched on.

 ⇒ "10.8.1.1 Switching on the Power Supply" on page 86
10.8.2.3 Short Duration Low Voltage

A low voltage condition is designated as short duration when the input voltage U falls below the threshold limit for longer than 5 seconds and then exceeds 18 V before the internal data has been saved in the flash EEPROM.

The MSC will behave in the manner shown below during short duration low voltage conditions:

![States of the MSC During Short Duration Low Voltage Conditions](image)

1. As long as the input voltage is above the threshold limit, the MSC will be in the 'RUN' state, i.e., the application program will be executed. Explanations of the states: ⇨ table 15 on page 88
2. If the voltage falls below the threshold limit, the MSC will go into the 'SAVE' state.
3. The MSC will remain in the 'SAVE' state until the internal data has been completely saved. This means that the outputs will also remain disabled as long as the internal data is being saved, even if the voltage has already exceeded 18 V.
4. When the internal data has been completely saved, the MSC will behave as if the power supply had been switched on. ⇨ "10.8.1.1 Switching on the Power Supply" on page 86
10.9 Digital I/Os

Each of the 8 digital terminals I/O1…I/O8 of the MSC can be used as either an input or an output. Each digital output is internally connected back to a digital input. This enables the application program to read the status of the digital outputs and compare it to the requested value.

Whether a terminal will be used as an input or an output is set in the PLC configuration of the MACS development environment.

The following digital output circuits are available:
- Open emitter outputs, switches to +24 V (L2+)
- Open collector outputs, switches to ground (M2)

Basic wiring diagrams of these circuits: figure 54 on page 93

When ordering the MSC, the wiring of the digital outputs must be specified.

10.9.1 Display of the Operational State

The yellow status LEDs «I/O1»…«I/O8» on the front panel of the MSC show the internal operational state of the digital I/Os. These status LEDs are activated only when the application program is running.

If a terminal is configured to be an input, the associated LED will illuminate when it is internally detected that the input is in the 1 state and the input is used in the application program.

When a terminal is configured to be an output, the associated LED will illuminate if the output in the application program is in the 1 state.

When MSCs have open emitter outputs, the LED will illuminate if the terminal is connected through to +24 V (L2+).

When MSCs have open collector outputs, the LED will illuminate if the terminal is connected through to ground (M2).

Basic wiring diagrams of the digital outputs: figure 54 on page 93

The status LEDs «I/O1»…«I/O8» will illuminate also if L2+ or M2 are not connected.

The operational state of the digital I/Os can be queried with the aid of function blocks in the application program.
10.9.2 Power Supply

DANGER The L2+/M2 power supply terminals of the MSC type D136E001-001 are not protected against reverse polarity (in deviation from the requirements of IEC 61131-2). Reverse polarity on terminals L2+ and M2 will lead to permanent damage to the MSC!

The L2+/M2 power supply terminals of the other MSC types are protected against reverse polarity.

The L1+/M1 power supply terminals of all MSC types and the power supply terminals of the other M3000® modules are protected against reverse polarity. If the polarity of these power supply terminals is reversed, the modules will not function.

WARNING M3000® modules must be protected from overvoltages and/or reverse energization from the sensor to the module!

There is a danger of:
- Permanent damage by overheating or fire
- Malfunctions

M3000® modules must have the correct voltage, polarity, and terminal assignments.

WARNING The internal electronics of DIN rail modules and attached sensors must be supplied with power from a permanently connected (unswitched) power supply that cannot be individually switched off, without switching off the module’s power supply.

If a switched power supply is used, such as when there are intermediate switching devices (emergency stops, manual operators, etc.), the following problems might arise, depending on the state of the power supply for the internal electronics of the module and sensors (☞ table 3 on page 40):
- Reverse energization from sensor to module
- Invalid sensor data

WARNING Sensors that are connected to digital inputs of DIN rail modules with several I/O groups, such as MSC, QDIO, or RDIO, must under all conditions be supplied from the same power supply as the corresponding I/O group to which the sensor is connected!

Otherwise, if the power supply for the internal electronics of the module is switched off, there might be reverse energization from the sensor to the module.

There is a danger of:
- Uncontrolled movements
- Fault or failure of a manual control
- Permanent damage to the module
- Malfunctions
The power supply for the digital I/Os of the MSC is independent of the power supply for the MSC's internal electronics (L1+/M1) and is established over the terminals L2+ and M2.

Power supply characteristics
⇒ "6.2.1 Power Supply Characteristics" on page 38

Connecting sensors to the power supply:
⇒ "6.2.4 Connecting Sensors" on page 42

Connecting the power supply for the internal electronics:
⇒ "6.2.3 Connecting the Power Supply" on page 39

10.9.3 Digital Outputs

The following digital output circuits are available:

- Open emitter outputs, switches to +24 V (L2+)
- Open collector outputs, switches to ground (M2)

Open Emitter Output

A digital open emitter output in the 1 state (conductive) connects the attached load R_L to the power supply terminal L2+.

Open Collector Output

A digital open collector output in the 1 state connects the attached load R_L to the ground potential terminal M2 of the power supply.

When ordering the MSC, the wiring of the digital outputs must be specified.

The output 'Outputs Enabled' is always an open emitter output.
⇒ "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116

© 2004 Moog GmbH
User Manual M3000® and MSC (B95906-001; Version 1.1; 06/04)
93
10.9.3.1 Dependence on the 'Outputs Enabled' Signal

If the digital output 'Outputs Enabled' is in the 0 state (LED «OutEN» does not illuminate), all other outputs are disabled.

In this case, although the internal states of the digital outputs are shown on the front panel status LEDs «I/O1»…«I/O8» of the MSC, they are not connected through to the output.

⇒ "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116

Behavior of the digital outputs when the power supply for the MSC's internal electronics is switched off or fails:

⇒ "10.8.1.2 Switching off or Failure of the Power Supply" on page 86

10.9.3.2 Current Limiting and Overload Protection

All digital outputs are protected by an integrated power limiter and a thermal overload protection device.

In an overload condition, the affected output will be automatically disabled. After the overload has been removed and thermal cooling is complete, the application program can re-enable the output. To re-enable the output, the overloaded output must first be switched to the 0 state. It will then be available as normal.

A protective circuit with a limiting voltage of 50 V with respect to +24 V (L2+) for open emitter outputs or with respect to ground (M2) for open collector outputs protects all outputs against induced voltage spikes when there are inductive loads.

Reverse energization or induced voltage spikes might cause the overload protection of unaffected outputs to trigger prematurely.

10.9.3.3 Overload Behavior

![Typical Output Current Limiting of MSC's Digital Outputs](image)

Figure 55: Typical Output Current Limiting of MSC's Digital Outputs versus the Temperature T of the Transistor
10.9.3.4 Specifications

Number of digital outputs
Maximum 8
⇒ "10.9 Digital I/Os" on page 91

Type of outputs
Semiconductor, non-capacitive

Protective circuitry for inductive loads
Limiting voltage of 50 V (typ.) with respect to +24 V (L2+) for open emitter outputs or with respect to ground (M2) for open collector outputs

Power dissipation of protection devices when limiting
Max. 0.5 W per output
Max. 4 W per MSC

Status display
One yellow status LED per I/O
⇒ "10.9.1 Display of the Operational State" on page 91

Diagnosis function
The operational state of the digital I/Os can be queried with the aid of function blocks in the application program.

Power consumption for the internal control circuit (L2+/M2)
≤ 200 mA

10.9.3.5 Load Connection

Total load (100 %)
4 A (8 x 0.5 A), when all 8 terminals are used as outputs

Overload protection
Electronic current limiting and thermal overload protection
⇒ "10.9.3.2 Current Limiting and Overload Protection" on page 94

Threshold limit of the overload or short-circuit protection
Min. 0.7 A, typ. 1.1 A

Output delay (hardware)
From 0 to 1: max. 100 µs
From 1 to 0: max. 100 µs

Update time
The update time corresponds to the task interval of the application program that actuates the output.

The task interval (and thereby the update time of the outputs) is set in the task configuration of the MACS development environment.

Output capacitance
< 20 nF

Rated voltage
+24 V DC

Voltage loss (at rated current)
< 2 V

Rated current in 1 state
0.5 A

Leakage current in 0 state
Max. 0.1 mA

Parallel connection of outputs
Not permissible
10.9.3.6 Insulation Resistance

Insulation resistance
Rated voltage: 0–50 V DC
Test voltage for 2,000 m (2,187 yd) operating elevation: 500 V DC

10.9.4 Digital Inputs

The digital inputs are current consuming inputs of the type 1 according to IEC 61131-2. They are designed for an input voltage rating of 24 V. The input values (0/1 state) are read cyclically. An open input is interpreted as the 0 state.

10.9.4.1 Basic Wiring Diagram

![Basic Wiring Diagram of a Digital Input of the MSC (Current Consuming)](image)

10.9.4.2 Pulse Detection and Disturbance Suppression

The digital inputs are read cyclically. The sampling time corresponds to the task interval of the application program that reads the input.

The task interval (and thereby the sampling time of the inputs) is set in the task configuration of the MACS development environment.

For input pulses to be reliably detected, they must be longer than the task interval specified in the application program. When defining the minimum pulse duration that can be detected by digital I/Os, the following differentiation is made:

- Pulses that are never detected; pulse duration: \(\leq 50 \mu s \)
- Pulses that can be detected (if the system reads the input when the pulse appears); pulse duration: \(> 50 \mu s \)
- Pulses that are always detected; pulse duration: \(> \) the set task interval

The user may implement multiple sampling in the application program in order to suppress disturbance impulses. In doing so, the user must consider the tradeoff between the desired level of disturbance suppression and the required reaction time of the system.
10.9.4.3 Specifications

Number of the digital inputs

- Maximum 8
 ⇒ "10.9 Digital I/Os" on page 91

Type

- Type 1 according to IEC 61131-2, current consuming

Wire lengths

- In the control cabinet: The voltage drop must be taken into consideration when choosing the wire cross section; there are no other practical limitations.
- Field wiring: All relevant national regulations as well as the requirements of IEC 61131-3 must be fulfilled.

Load rated voltage L2+

- 24 V DC (safety extra-low voltage SELV according to DIN EN 60950-1)

Reverse polarity protection

- Digital inputs are protected against reverse polarity

Potential isolation

- Achieved with optocouplers

Status display

- One yellow status LED per I/O
 ⇒ "10.9.1 Display of the Operational State" on page 91

Alarms

- Can be implemented in the application program

Input delay (hardware)

- From 0 to 1: max. 100 µs
- From 1 to 0: max. 100 µs

Sampling time

- The sampling time corresponds to the task interval of the application program that reads the input.
 ⇒ "10.9.4.2 Pulse Detection and Disturbance Suppression" on page 96

 The task interval (and thereby the sampling time of the inputs) is set in the task configuration of the MACS development environment.

Input capacitance

- Max. 10 nF

Power consumption for the internal control circuit (L2+/M2)

- ≤ 200 mA
10.9.4.4 U/I Working Ranges

![Typical Characteristic Input Curve of a Digital Input (U vs. I)](image)

Figure 57: U/I Working Ranges of MSC’s Digital Outputs (Current Consuming)

<table>
<thead>
<tr>
<th>Input voltage (DC) of the external power supply L2+</th>
<th>rated voltage</th>
<th>(U_e = 24 \text{ V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>upper limit</td>
<td>(U_{e\max} = 36 \text{ V})</td>
<td></td>
</tr>
<tr>
<td>lower limit</td>
<td>(U_{e\min} = 18 \text{ V})</td>
<td></td>
</tr>
</tbody>
</table>

Limits for the 1 state

upper limit	\(U_{H\max} = 30 \text{ V} \)
---	\(I_{H\max} = 15 \text{ mA} \)
lower limit	\(U_{H\min} = 15 \text{ V} \)
	\(I_{H\min} = 2 \text{ mA} \)

Limits for the 0 state

upper limit	\(U_{L\max} = 15/5 \text{ V} \)
---	\(I_{L\max} = 15 \text{ mA} \)
lower limit	\(U_{L\min} = -3 \text{ V} \)
	\(I_{L\min} = \text{ND} \)

Table 16: U/I Working Ranges of MSC’s Digital Outputs (Current Consuming)

10.9.4.5 Insulation Resistance

Insulation resistance

- Rated voltage: 0–50 V DC
- Test voltage for 2,000 m (2,187 yd) operating elevation: 500 V DC

Insulation Resistance of MSC’s Digital Inputs
10.10 Analog Outputs

10.10.1 Basic Wiring Diagram

10.10.2 Specifications

Number of analog outputs
2

Analog output type
Voltage output ±10 V nominal
Additionally one current output each:
configurable as: ±10 mA, ±50 mA or 4–20 mA (each nominal)

The analog outputs are configured in the PLC configuration of the MACS development environment.

Output impedance within nominal signal range
< 0.2 Ω (voltage output)
Approx. 1 MΩ (current outputs)

Greatest error over the entire temperature range
±1 % of full scale value
 Specifications of MSC's Analog Outputs

<table>
<thead>
<tr>
<th>Output ranges</th>
<th>Nominal</th>
<th>Minimum</th>
<th>Maximum</th>
<th>LSB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 V</td>
<td>-10.92 V</td>
<td>+10.92 V</td>
<td>0.333 mV</td>
<td></td>
</tr>
<tr>
<td>±10 mA</td>
<td>-10.92 mA</td>
<td>+10.92 mA</td>
<td>0.333 µA</td>
<td></td>
</tr>
<tr>
<td>±50 mA</td>
<td>-54.61 mA</td>
<td>+54.61 mA</td>
<td>1.667 µA</td>
<td></td>
</tr>
<tr>
<td>4–20 mA</td>
<td>+3.262 mA</td>
<td>+20.74 mA</td>
<td>0.267 µA</td>
<td></td>
</tr>
</tbody>
</table>

Table 17: Output Ranges of MSC's Analog Outputs

Digital resolution
16 bit

Data format in the application program
32 bit floating point

Load impedance range
Voltage output ±10 V: ≥ 1,000 Ω
Current output ±10 mA: ≤ 1,000 Ω
Current output ±50 mA: ≤ 200 Ω
Current output 4–20 mA: ≤ 500 Ω

The load impedance range of the current output 4–20 mA does not comply with IEC 61131-2. (IEC 61131-2 requires a load impedance range of ≤ 600 Ω.)

Update time
The update time corresponds to the task interval of the application program that actuates the output.

The task interval (and thereby the update time of the outputs) is set in the task configuration of the MACS development environment.

Rise time $T_{10/90}$

<table>
<thead>
<tr>
<th>Output</th>
<th>Step</th>
<th>From</th>
<th>To</th>
<th>R_L</th>
<th>Typ. $T_{10/90}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Output</td>
<td>±10 V</td>
<td>+10 V</td>
<td>-10 V</td>
<td>≥ 1,000 Ω</td>
<td>140 µs</td>
</tr>
<tr>
<td></td>
<td>-10 V</td>
<td>+10 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Output</td>
<td>±10 mA</td>
<td>+10 mA</td>
<td>-10 mA</td>
<td>1,000 Ω</td>
<td>60 µs</td>
</tr>
<tr>
<td></td>
<td>-10 mA</td>
<td>+10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±50 mA</td>
<td>+50 mA</td>
<td>-50 mA</td>
<td>200 Ω</td>
<td>125 µs</td>
</tr>
<tr>
<td></td>
<td>-50 mA</td>
<td>+50 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4–20 mA</td>
<td>20 mA</td>
<td>4 mA</td>
<td>500 Ω</td>
<td>70 µs</td>
</tr>
<tr>
<td></td>
<td>4 mA</td>
<td>20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18: Rise Time $T_{10/90}$ of MSC's Analog Outputs

Protection
Continuous short-circuit protection; overvoltage protection up to ±36 V

Short-circuit current $I_{k,max}$
Voltage output ±10 V: $I_{k,max} = ±15$ mA
Current output ±10 mA: $I_{k,max} = ±10.92$ mA
Current output ±50 mA: $I_{k,max} = ±54.61$ mA
Current output 4–20 mA: $I_{k,max} = ±20.74$ mA
Specifications of MSC’s Analog Outputs

Recommended cable types
Use only shielded cables.
The shield must be made of copper braiding with at least 80% coverage.
The wire must be made of copper with a cross section of at least 0.25 mm² (23 AWG).
In environments with a high amount of disturbance, use cables with twisted pair wires.

Calibration
The MSC is calibrated at the factory and does not require any additional calibration.

Permissible load types
Resistive load according to "Load impedance range" on page 100.

The stability of the current outputs is ensured up to an inductive load of 100 mH.

The stability of the voltage outputs is ensured up to a capacitive load of 10 µF.

Output current of the voltage output
Max. 10 mA

Wire fault monitoring of the analog current outputs
The analog current outputs are monitored for wire faults. The status of the wire fault monitoring can be evaluated in the application program.
The «Ao1b» or «Ao2b» front panel error LEDs of the MSC illuminate if:
• No load is attached to the corresponding analog current output
• The load resistance is too great (the current output can no longer drive the required current)
• There is a wire break

10.11 Reference Voltage Output

Reference voltage
+10 V DC

Load current
Max. 5 mA

Precision
±0.3 % of full scale value

Temperature coefficient
< 280 µV/K

Output impedance
< 0.2 Ω

Protection
Continuous short-circuit protection; overvoltage protection up to ±36 V

Short-circuit current
I_{r,max} = 15 mA (residual current of the terminals 91 (REF) and 100 (REF) of the connector X6)
10.12 Analog Inputs

10.12.1 Basic Wiring Diagram

The upper analog input Aix in figure 59 is configured as a voltage input, the lower analog input Aiy as a current input.

An analog input Aix can only be used as a current input if the terminal Cxa is connected to the terminal Cxb. Example: If Ai4 will be used as an analog current input, C4a must be connected to C4b.

Insertion bridges for connecting the MSC terminals Cxa and Cxb are available from Moog as accessories.

![Basic Wiring Diagram of an Analog Input of the MSC](image)

10.12.2 Specifications

- **Number of analog inputs**: 8
- **Type of analog inputs**: Differential, configurable as: ±10 V, ±10 mA or 4–20 mA (each nominal)
 - The analog inputs are configured in the PLC configuration of the MACS development environment.
- **Common-mode properties**:
 - Common-mode rejection: > 85 dB
 - Common-mode voltage range: ±17 V
- **Input impedance within nominal signal range**:
 - > 100 kΩ on voltage inputs
 - 200 Ω on current inputs
Greatest error over the entire temperature range
±0.5 % of full scale value

Specifications of MSC's Analog Inputs

Permissible measurement range

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Minimum</th>
<th>Maximum</th>
<th>LSB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 V</td>
<td>-10.92 V</td>
<td>+10.92 V</td>
<td>0.3 mV</td>
</tr>
<tr>
<td>±10 mA</td>
<td>-10.92 mA</td>
<td>+10.92 mA</td>
<td>0.3 µA</td>
</tr>
<tr>
<td>4–20 mA</td>
<td>+3.262 mA</td>
<td>+20.74 mA</td>
<td>0.26 µA</td>
</tr>
</tbody>
</table>

Table 19: Permissible Measurement Range of MSC's analog inputs

Max. permissible continuous overload (higher load results in damage)
±36 V on voltage inputs
±36 mA on current inputs (or ±6.4 V without current limiting)

Digital resolution
16 bit

Data format in the application program
32 bit floating point

Output values when below or above measurement range
 Maximum or minimum values: ⇨ table 19 on page 103

Conversion method
Successive approximation

Duration of conversion per input
Typ. 12.5 µs

Sampling time
The sampling time corresponds to the task interval of the application program that reads the input.
All 8 analog inputs are sampled continuously in succession, i.e., every analog input is updated every 100 µs (max. 8 inputs à 12.5 µs of conversion time). The most recent value is used in the application program.

Input filter
Filter type: low pass of 3rd order with Bessel characteristic
Crossover frequency: typ. 1.5 kHz

Protective device
Diodes

Recommended cable types
Use only shielded cables.
The shield must be made of copper braiding with at least 80% coverage.
The wire must be made of copper with a cross section of at least 0.25 mm² (23 AWG).
In environments with a high amount of disturbance, use cables with twisted pair wires.

Calibration
The MSC is calibrated at the factory and does not require any additional calibration.

Crosstalk between inputs
< 0.02 %
10.12.3 Connecting Analog Sensors

Recommended cable types

Use only shielded cables. The shield must be made of copper braiding with at least 80% coverage. The wire must be made of copper with a cross section of at least 0.25 mm² (23 AWG). In environments with a high amount of disturbance, use cables with twisted pair wires.

10.12.3.1 Shielding Signal Cables

Preferred Shielding

![Preferred Shielding Diagram](image1.png)

Alternative Shielding

![Alternative Shielding Diagram](image2.png)

Figure 60: Shielding the Signal Cable when Connecting an Analog Sensor to the MSC
10.12.3.2 Isolated Sensors

Connecting Isolated Analog Sensors to the MSC

![Figure 61: Connecting an Isolated Analog Sensor to the MSC (Voltage Signal)](image1)

![Figure 62: Connecting an Isolated Analog Sensor to the MSC (Current Signal)](image2)

10.12.3.3 Non-Isolated Sensors

Sensors with their own auxiliary energy connection

Connecting Non-Isolated Analog Sensors with their Own Auxiliary Energy Connection to the MSC

![Figure 63: Connecting a Non-Isolated Analog Sensor (Voltage Signal) with its Own Auxiliary Energy Connection to the MSC](image3)
Connecting Non-Isolated Analog Sensors with the Same Auxiliary Energy Connection as the MSC

Figure 64: Connecting a Non-Isolated Analog Sensor (Current Signal) with its Own Auxiliary Energy Connection to the MSC

Figure 65: Connecting a Non-Isolated Analog Sensor (Voltage Signal) with the Same Auxiliary Energy Connection as the MSC

Figure 66: Connecting a Non-Isolated Analog Sensor (Current Signal) with the Same Auxiliary Energy Connection as the MSC
Connecting Non-Isolated Analog Two Wire Sensors with the Same Auxiliary Energy Connection as the MSC

10.12.3.4 Using the MSC’s Internal Reference Voltage

Connecting a Potentiometer to the MSC Using the MSC’s Internal Reference Voltage
10.13 Digital Sensor Interfaces

The MSC provides 2 digital sensor interfaces according to TIA/EIA 422 (previously RS 422) that can be used with devices such as position transducers or shaft encoders with an SSI interface or incremental sensor signals.

- "10.13.2 Connecting SSI Sensors" on page 109
- "10.13.3 Connecting Incremental Sensors" on page 111

The sensor interfaces are configured in the PLC configuration of the MACS development environment.

Recommended cable types

Use only shielded cables.
The shield must be made of copper braiding with at least 80% coverage.
The wire must be made of copper with a cross section of at least 0.25 mm² (23 AWG).
In environments with a high amount of disturbance, use cables with twisted pair wires.

10.13.1 Wire Fault Monitoring

The inputs A, B, and Z of the digital sensor interfaces of the MSC are monitored for wire faults, regardless of which type of sensor is attached.

The signals supplied by the wire fault monitoring function are available in the application program. The user is responsible for evaluating these signals and defining the appropriate reaction to the appearance of a wire fault.

The status of wire fault monitoring is displayed by 6 front panel error LEDs of the MSC. Each of the 6 TIA/EIA 422 inputs is assigned to one LED.

- "10.13.1.1 Wire Fault Display LEDs" on page 108

10.13.1.1 Wire Fault Display LEDs

The 6 front panel error LEDs «A1», «B1», «Z1», «A2», «B2», and «Z2» of the MSC will illuminate if:

- No sensor is attached to the corresponding sensor interface
- There is a wire break
10.13.2 Connecting SSI Sensors

An SSI sensor supplies an absolute position signal or angle signal that can be read through the MSC's sensor interface. The current value is available in the application program continuously.

If an SSI sensor is attached to the sensor interface of the MSC, the MSC can be used as a master or a slave. The sensor interface must then be inserted and configured as a master or slave, respectively, in the PLC configuration of the MACS development environment.

If the MSC is used as a master, the terminal assignment of the SSI interface will be different than if it is used as a slave!

MSC connection diagram (master mode): ☛ figure 71 on page 109
MSC connection diagram (slave mode): ☛ figure 72 on page 110

10.13.2.1 SSI Master Mode

In SSI master mode, the MSC generates the SSI clock internally (sensor 1: CLK1, sensor 2: CLK2) with adjustable frequencies in the range between 78 kHz and 5 MHz. The frequencies are set in the PLC configuration of the MACS development environment.

When idle, the clock signal will be in the 1 state. The first falling edge of the clock signal tells the SSI sensor to hold its momentary value. The clock signal's subsequent rising edge starts the data transmission of the SSI sensor. The output begins with the most significant bit (MSB). After a complete data set has been transmitted, the SSI sensor holds the data signal in the 0 state until the SSI sensor is ready for another transmission. The return of the data signal to the 1 state simultaneously fulfills the condition the SSI interface needs to trigger a new read-in cycle.

MSC in SSI Master Mode

Connection Diagram of the MSC in Master Mode

Figure 71: Connection Diagram of the MSC in Master Mode
10.13.2.2 SSI Slave Mode

When in SSI slave mode, the MSC does not generate its own SSI clock; instead, it reads the data in synchronization with an externally generated clock signal. When it is an SSI slave, the MSC influences neither the SSI clock frequency nor the update rate with which new data is requested from the SSI sensor. In this mode, the MSC reads the data signal with every falling edge of the clock.

With a symmetrical clock, the sensor interface can evaluate signals in the frequency range of 78 kHz to 5 MHz.

When the clock signal is asymmetrical, the width of the positive pulse must be smaller than 6.3 µs so that the sensor interface that is configured as an SSI slave will not perceive prematurely that the data transmission is concluded. The clock signal must be in the 1 state for longer than 6.5 µs so that the sensor interface will save the value that has been read.

The signal levels comply with the standard TIA/EIA 422 (previously RS 422). SSI sensors can be used that supply either gray code or binary coded data. The maximum possible resolution is 32 bits.

The adaptation for the application program is done in the MACS development environment. For this, the proper function blocks (as appropriate for the coding of the sensor) must be inserted into the application program.

The external SSI master must be capable of driving two TIA/EIA 422 inputs (including the termination resistors)!
10.13.3 Connecting Incremental Sensors

Incremental sensors supply a relative position or angle signal that the MSC can read. In doing so, it can detect and evaluate, without error, impulse sequences with frequencies up to 8 MHz. The adjustable 32 bit actual value in the MSC is varied dependent on the leading or lagging sequence of A and B signals. Only 4 egdes evaluation is used for this.

Example:
With 4 egdes evaluation, a sensor with 1,024 dashes per revolution will supply to the application program 4,096 increments per revolution.

A check will be performed with every rising and falling edge of the A and B signals to determine whether the B signal is lagging behind the A signal. If this is the case, the actual value will be increased by 1. If the A signal lags behind the B signal, the actual value will be decreased by 1.

To the left of the reversal point in figure 75, signal B leads the signal A. The actual value is decreased by 1 with every edge of A and B.
To the right of the reversal point, signal A leads; as a result, the actual value is increased by 1 with every edge of A and B.

The signal levels comply with the standard TIA/EIA 422 (previously RS 422).
The terminal designations will vary, depending on the manufacturer of the incremental sensor.
Designations of Incremental Sensor Terminals

<table>
<thead>
<tr>
<th>MSC</th>
<th>Terminal Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>A_</td>
</tr>
<tr>
<td>A-</td>
<td>A_</td>
</tr>
<tr>
<td>B+</td>
<td>B_</td>
</tr>
<tr>
<td>B-</td>
<td>B_</td>
</tr>
<tr>
<td>Z+</td>
<td>Z_</td>
</tr>
<tr>
<td>Z-</td>
<td>Z_</td>
</tr>
</tbody>
</table>

Sensor supplied by Heidenhain
Sensor supplied by Hengstler
Sensor supplied by Stegmann
Sensor supplied by Allen-Bradley

Table 20: Designations of Incremental Sensor Terminals
(MSC and Incremental Sensors from Various Manufacturers)

The adaptation for the application program is done in the MACS development environment. For this, the proper function blocks (as appropriate for the coding of the sensor) must be inserted into the application program.

10.14 E-Bus Interface

The MSC’s inputs and outputs can be extended locally by establishing an E-bus group (by attaching up to 7 E-bus slaves to the E-bus interface).

Examples:

- After 7 QDIO 16/16-0,5 extension modules are attached, an additional 112 digital inputs and 112 individually configurable digital I/Os will be available.
- After attaching 4 QAIO 16/4 extension modules and 3 QDIO 16/16-0,5 extension modules, an additional 64 analog inputs, 16 analog outputs, 48 digital inputs, and 48 individually configurable digital I/Os will be available.

Additional information about the E-bus interface and E-bus groups:

- "7.4.1 E-Bus Interface" on page 55
- "7.4.2 E-Bus Communication" on page 56
- "7.5.2 E-Bus Groups" on page 60

10.14.1 Configuration of the E-Bus Interface

The E-bus interface of the MSC is configured in the PLC configuration of the MACS development environment. The number and type of attached E-bus slaves must be specified in the configuration.

The inputs and outputs of the attached E-bus slaves are also configured in the PLC configuration.
10.15 CAN Bus Interfaces

The MSC is equipped with the following independent CAN bus interfaces that can be operated within CAN bus networks:

- **WideCAN** (2 «WCAN» front panel connectors of the MSC)
- **LocalCAN** (2 internally on the lateral Q-connectors of the MSC)

A separate CAN bus controller is included for every CAN bus interface.

![CAN Bus Interfaces of the MSC](image)

Although both CAN bus interfaces are equally fast and have equal priority, WideCAN is typically used for communication between all the network stations of a wide area control system, while LocalCAN is preferred for rapid local communication between fewer network stations.

The «WCAN» and «LCAN» front panel status LEDs of the MSC flash synchronously to the flow of data that the MSC is sending over the WideCAN or LocalCAN interface, respectively.

The «WCAN» front panel connectors are connected internally 1:1 with each other. As a result, the MSC can be connected directly to the CAN bus without a T-adapter.

The functionality of the CAN bus interfaces is defined in the application program.

Information about CAN bus and CANopen:

⇒ "7.3 CAN Bus and CANopen" on page 50

Information about the CAN bus interface cable:

⇒ "7.3.6 CAN Bus Interface Cable" on page 54
10.15.1 CAN Bus Termination Resistor

The LocalCAN interface of the MSC is equipped with a switchable CAN bus termination resistor. The termination resistor can be switched on in the PLC configuration of the MACS development environment.

The «TRM» front panel status LED of the MSC illuminates when the termination resistor of the LocalCAN interface is switched on.

The switchable CAN bus termination resistor of the MSC can be used as a termination resistor only on LocalCAN bus groups.

In WideCAN bus groups, the switchable CAN bus termination resistor of the MSC cannot be used as a termination resistor! Separate pluggable CAN termination resistors must be used for this.

D-sub connectors with CAN bus termination resistors are available from Moog.

10.15.2 Setting the CANopen Node-ID

The CANopen node-ID of the CAN bus interface of the MSC can be set or modified in the following places:

- In the application program
- With the PLC browser in the MACS development environment

The CANopen node-ID is saved in the license key.

10.15.3 Setting the CAN Bus Baud Rate

The CAN bus baud rate is set in the application program.
10.16 Serial Interfaces

The MSC provides the following serial interfaces:

- **MACS interface** according to TIA/EIA 232 (previously RS 232) with «MACS» front panel connector as a programming interface
 ⇒ "10.5.1 Communication Between MSC and MACS" on page 80

 The MACS interface is configured in the PLC configuration of the MACS development environment.

- **SIO interface** with «SIO» front panel connector

 SIO interfaces according to the following TIA/EIA -standards are available from Moog:
 - TIA/EIA 232 (previously RS 232)
 - TIA/EIA 422 (previously RS 422)
 - TIA/EIA 485 (previously RS 485)

 When ordering the MSC, the type of the SIO interface must be specified.

 The SIO interface’s communication parameters are set in the application program.

Terminal assignment of the serial interfaces:
⇒ "10.4.1 Terminal Assignment" on page 73

Serial interface cables:
⇒ "7.2 Serial TIA/EIA Interface Cables" on page 47

10.17 Safety Functions

10.17.1 Watchdog

The MSC provides a function for monitoring whether the hardware and software are functioning properly. When there is a fault, this function can disable all outputs. Depending on the selected output type, this will mean that the output is switched either to a currentless or zero potential condition. As a result, the user can set up systems that have a greatly reduced risk of fatal malfunctions.

In the MSC, this function is implemented in the M_WATCHDOG function block, which can be used in the application program to be monitored. If this function block is used, it must be actuated cyclically in order to keep the outputs enabled.

When there is a fault (when the application program can no longer actuate the function block within the set time period), the outputs will be disabled.

If the M_WATCHDOG function block is not used in the application program, the MSC's watchdog will not operate. In this case, the outputs will always be enabled and they will output the value calculated in the application program.

The digital output 'Outputs Enabled' indicates the enabled state of all digital outputs, analog outputs, and the MSC's E-bus communication.
10.17.2 'Outputs Enabled' Output (LED «OutEN»)

WARNING

If there is a defect in an output stage, the 'Outputs Enabled' signal will not necessarily shut down all of the outputs securely.

The digital output 'Outputs Enabled' indicates the enabled state of all digital outputs, analog outputs, and the MSC's E-bus communication. It can be used to tell another controller that all of the MSC's outputs were disabled.

As long as the 'Outputs Enabled' output is in the 1 state, the application program will control all outputs and the E-bus communication.

If the 'Outputs Enabled' output is switched to the 0 state, all outputs will be disabled and the E-bus communication will be terminated.

If the digital output 'Outputs Enabled' is in the 0 state (LED «OutEN» does not illuminate), all other outputs are disabled. In this case, although the internal states of the digital outputs are shown on the front panel status LEDs «I/O1»…«I/O8» of the MSC, they are not connected through to the output.

The digital output 'Outputs Enabled' will be switched to the 1 state only if the following conditions are fulfilled simultaneously:

- An error-free application program has been loaded onto the MSC and will be started once after every reset of the MSC
- A valid license key is inserted
- The M_WATCHDOG function block is not used or the M_WATCHDOG function block is used in the application program and is actuated cyclically within the set time

If any one of these conditions is not fulfilled, the 'Outputs Enabled' output will be switched to the 0 state, thereby disabling all of the MSC's other outputs. In addition, the E-bus communication will be terminated.

10.17.2.1 «OutEN» LED

The front panel LED «OutEN», located of the MSC, indicates the status of the 'Outputs Enabled' output. The LED «OutEN» illuminates when the 'Outputs Enabled' output is in the 1 state.

10.17.3 Stopping the Application Program

An application program (executed in the MSC) can be stopped in the MACS development environment.

After an application program stops, all analog and digital outputs will automatically be switched to a secure state. This secure value can be set for each output individually by modifying the 'Secure' channel parameter in the PLC configuration.

If the «OutEN» LED does not illuminate (when the 'Outputs Enabled' output is in the 0 state), this secure value will not be at the outputs because the outputs will be disabled.

⇒ "10.17.2 'Outputs Enabled' Output (LED «OutEN»)" on page 116
10.18 Nameplate

Nameplate of the MSC

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part number</td>
<td>Serial number</td>
<td>Revision</td>
<td>Date in the format MM YY (month year)</td>
</tr>
</tbody>
</table>

Figure 77: Position of the Nameplate on the MSC

![Nameplate](image)
11 Product Range

The following chapter describes only a small part of Moog's extensive product range. In addition to the many different M3000® modules, Moog's current product range includes a large variety of accessories.

11.1 M3000® Starter Kit

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3000® Starter Kit</td>
<td>Complete package including everything needed to get started</td>
<td>D147E001-002</td>
</tr>
<tr>
<td></td>
<td>"3.2 M3000® Starter Kit" on page 17</td>
<td></td>
</tr>
</tbody>
</table>

Table 21: Product Range – M3000® Starter Kit

11.2 M3000® Modules

11.2.1 MSC (Moog Servo Controller)

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC</td>
<td>Programmable multi-axis controller</td>
<td>D136E001-001</td>
</tr>
<tr>
<td></td>
<td>"3.3.1 MSC" on page 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSC with digital open emitter outputs, 2 MB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 54 on page 93</td>
<td></td>
</tr>
<tr>
<td>MSC 4 MB</td>
<td>Programmable multi-axis controller</td>
<td>D136-001-008</td>
</tr>
<tr>
<td></td>
<td>"3.3.1 MSC" on page 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSC with digital open emitter outputs, 4 MB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 54 on page 93</td>
<td></td>
</tr>
</tbody>
</table>

Table 22: Product Range – MSC

The plug-in terminal strips, that may be needed for connection of power and signal cables, are not included in delivery. The plug-in terminal strips are available from Moog as accessories.

"11.8 Plug-In Terminal Strips" on page 124

The MSC does not function without license key. This license key is not included in the standard delivery. It is available from Moog as an accessory.

"11.4 License Keys" on page 121
11.2.2 Q-Modules

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDIO 16/16-0,5</td>
<td>Digital I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus) 16 inputs and 16 I/Os Positive switching “3.3.2 Q-Modules” on page 19</td>
<td>D137-001-005</td>
</tr>
<tr>
<td>QDIO 16/16-0,5N</td>
<td>Digital I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus) 16 inputs and 16 I/Os Zero switching “3.3.2 Q-Modules” on page 19</td>
<td>D137-001-004</td>
</tr>
<tr>
<td>QAIO 16/4-V</td>
<td>Analog I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus) 16 voltage inputs (±10 V) 4 voltage outputs (±10 V) “3.3.2 Q-Modules” on page 19</td>
<td>D137-001-007</td>
</tr>
<tr>
<td>QAIO 16/4-A</td>
<td>Analog I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus) 16 current inputs (0–20 mA) 4 voltage outputs (±10 V) “3.3.2 Q-Modules” on page 19</td>
<td>D137-001-006</td>
</tr>
<tr>
<td>QCAN</td>
<td>CAN extension module which can be used to make available the LocalCAN bus of an E-bus group for external CAN bus network stations (over a D-sub front panel connector) “3.3.2.2 QCAN” on page 20</td>
<td>D137-001-003</td>
</tr>
</tbody>
</table>

Table 23: Product Range – Q-Modules

The plug-in terminal strips, that may be needed for connection of power and signal cables, are not included in delivery. The plug-in terminal strips are available from Moog as accessories.
[“11.8 Plug-In Terminal Strips” on page 124](#)
11.2.3 R-Modules (Remote Modules)

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDIO 16/16-0,5</td>
<td>Remote module with digital I/Os and CANopen interface (connection over CAN bus) 16 inputs and 16 I/Os Positive switching</td>
<td>D137-002-001</td>
</tr>
<tr>
<td>RTEMP 8-CAN</td>
<td>Temperature control module with TIA/EIA 232 and CANopen interface (connection over CAN bus) 8 channel controllers</td>
<td>D137-002-002</td>
</tr>
<tr>
<td>RDISP 22</td>
<td>Display and operating terminal with TIA/EIA 232 and CANopen interface and 22 keys (connection over CAN bus)</td>
<td>D137-004-001</td>
</tr>
</tbody>
</table>

The plug-in terminal strips, that may be needed for connection of power and signal cables, are not included in delivery. The plug-in terminal strips are available from Moog as accessories.

The CPRTEMP software (needed to program and configure the RTEMP) is not included with RTEMP. CPRTEMP is available from Moog as an accessory.

The CPRDISP software (needed to program and configure the RDISP) is not included with RDISP. CPRDISP is available from Moog as an accessory.

Table 24: Product Range – R-Modules (Remote Modules)
11.3 Power Supply for M3000® Modules

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
</table>

Table 25: Product Range – Power Supply for M3000® Modules

11.4 License Keys

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>License key Controls</td>
<td>gray</td>
<td>D138-002-001</td>
</tr>
<tr>
<td>License key Motion</td>
<td>green</td>
<td>D138-002-002</td>
</tr>
</tbody>
</table>

Table 26: Product Range – License Keys

<table>
<thead>
<tr>
<th>Feature</th>
<th>License Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (Gray)</td>
<td>Motion (Green)</td>
</tr>
<tr>
<td>Run-time license of the MSC</td>
<td>•</td>
</tr>
<tr>
<td>CoDeSys operators and standard IEC 61131 library</td>
<td>•</td>
</tr>
<tr>
<td>Library with hardware-related functions: M_HW_MSC.Lib</td>
<td>•</td>
</tr>
<tr>
<td>Library for control engineering: M_Control.Lib</td>
<td>•</td>
</tr>
<tr>
<td>Library for the TIA/EIA 232 and CAN bus interface: M_SIO.Lib</td>
<td>•</td>
</tr>
<tr>
<td>Support for OPC and DDE interfaces</td>
<td>•</td>
</tr>
<tr>
<td>Ethernet and TIA/EIA 232 communication with the MACS development environment</td>
<td>•</td>
</tr>
<tr>
<td>Library for motion control according to PLCopen: M_PLCopen.Lib</td>
<td>•</td>
</tr>
<tr>
<td>Library with transfer functions (Z-functions): M_Transfer_Functions.Lib</td>
<td>•</td>
</tr>
<tr>
<td>Libraries for CANopen, Profibus DP, TCP, UDP, and TCP/IP (depending on MSC option)</td>
<td>•</td>
</tr>
</tbody>
</table>

Table 27: Features Provided by the Various License Keys

The MSC does not function without license key.

⇒ "3.4 License Key" on page 23
⇒ "10.6 License Key" on page 81
11.5 Software

11.5.1 MACS (Moog Axis Control Software)

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
</table>
| MACS development environment | Development environment according to IEC 61131 for solving complex control tasks (1 license)
 "3.5 Application Programs" on page 24 | D138-001-001 |
| | 1 additional license | D138-001-002 |
| | 5 licenses | D138-001-005 |
| | 10 licenses | D138-001-010 |
| MACS HMI | Visualization package which can be run without MACS
 Run-time license for 1 system
 "3.6.1 MACS HMI Visualization Package" on page 25 | D138-003-001 |
| | Run-time license for 10 systems | D138-003-010 |
| | Run-time license for 50 systems | D138-003-050 |
| Software maintenance contract | Support and MACS updates for 1 year (for 1 license)
 "3.6.2 Software Maintenance" on page 24 | B95914-001-001 |
| | 1 additional license | B95914-001-002 |
| | 5 licenses | B95914-001-005 |
| | 10 licenses | B95914-001-010 |

Table 28: Product Range – Software – MACS

11.5.2 Software for R-Modules

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
</table>
| CPRTEMP | Software for programming and configuring RTEMP
 "3.3.3.2 RTEMP" on page 21 | D138-004-001 |
| CPRDISP | Software for programming and configuring RDISP
 "3.3.3.3 RDISP" on page 22 | D138-006-001 |

Table 29: Product Range – Software for R-Modules
11 Product Range

11.6 Interface Cables

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossed TIA/EIA 232 interface cable, 5 m (5.47 yd)</td>
<td>Null modem cable which can be used as programming cable for connecting the MSC and PC (MACS) with 9 pole D-sub mating connectors</td>
<td>B95884-001</td>
</tr>
<tr>
<td>Crossed Ethernet interface cable, 10 m (10.94 yd)</td>
<td>10BaseT Cable with Crossed Twisted Pair Wires with 8 pole RJ45 mating connectors</td>
<td>B95909-001</td>
</tr>
<tr>
<td>Non-crossed Ethernet interface cable, 1 m (1.09 yd)</td>
<td>10BaseT Cable with Non-Crossed Twisted Pair Wires with 8 pole RJ45 mating connectors</td>
<td>B95909-004</td>
</tr>
<tr>
<td>Non-crossed Ethernet interface cable, 10 m (10.94 yd)</td>
<td>10BaseT Cable with Non-Crossed Twisted Pair Wires with 8 pole RJ45 mating connectors</td>
<td>B95909-002</td>
</tr>
<tr>
<td>Connection cable for RTEMP</td>
<td>Cable for connecting RTEMP to a PC with Western Phone and 9 pole D-sub mating connector</td>
<td>B95908-001</td>
</tr>
<tr>
<td>CAN bus interface cable, 3 m (3.28 yd)</td>
<td>⇒ "7.3.6 CAN Bus Interface Cable" on page 54</td>
<td>B95863-001</td>
</tr>
<tr>
<td>CAN bus interface cable, 10 m (10.94 yd)</td>
<td>⇒ "7.3.6 CAN Bus Interface Cable" on page 54</td>
<td>B95863-002</td>
</tr>
</tbody>
</table>

Table 30: Product Range – Interface Cables

11.7 CAN Bus Accessories

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB CAN adapter</td>
<td>Adapter (USB1.1 to CAN bus) with 9 pole D-sub mating connector with pin contacts</td>
<td>C43094-001</td>
</tr>
<tr>
<td>CAN bus termination resistor 120 Ω</td>
<td>9 pole D-sub mating connector with socket contacts</td>
<td>B95864-001</td>
</tr>
<tr>
<td>CAN bus termination resistor 120 Ω/GND</td>
<td>9 pole D-sub mating connector with pin contacts; CAN_GND internally connected to signal ground</td>
<td>B95865-001</td>
</tr>
</tbody>
</table>

Table 31: Product Range – CAN Bus Accessories
11.8 Plug-In Terminal Strips

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug-in terminal strip with screw terminals</td>
<td>8 pole (up to max. 2.5 mm² (14 AWG) wire cross section)</td>
<td>VK055-008</td>
</tr>
<tr>
<td></td>
<td>9 pole (up to max. 2.5 mm² (14 AWG) wire cross section)</td>
<td>VK055-009</td>
</tr>
<tr>
<td></td>
<td>18 pole (up to max. 2.5 mm² (14 AWG) wire cross section)</td>
<td>VK055-018</td>
</tr>
<tr>
<td>Plug-in terminal strip with spring loaded terminals</td>
<td>8 pole (up to max. 2.5 mm² (14 AWG) wire cross section)</td>
<td>B95907-008</td>
</tr>
<tr>
<td></td>
<td>9 pole (up to max. 2.5 mm² (14 AWG) wire cross section)</td>
<td>B95907-009</td>
</tr>
<tr>
<td></td>
<td>18 pole (up to max. 2.5 mm² (14 AWG) wire cross section)</td>
<td>B95907-018</td>
</tr>
<tr>
<td>Labels for plug-in terminal strips</td>
<td>For labeling plug-in terminal strips Printed with the numbers 1–108 Includes six labels</td>
<td>B95885-001</td>
</tr>
<tr>
<td>Insertion bridge</td>
<td>For connecting adjoining terminals of the plug-in terminal strips</td>
<td>A69102</td>
</tr>
<tr>
<td>Coding tab</td>
<td>For coding plug-in terminal strips</td>
<td>C43145-001</td>
</tr>
<tr>
<td>Coding profile</td>
<td>For coding plug-in terminal strip connectors of M3000® modules</td>
<td>C43146-001</td>
</tr>
</tbody>
</table>

The various DIN rail modules require different numbers of plug-in terminal strips.

"11.8.1 Number of Required Plug-In Terminal Strips" on page 124

11.8.1 Number of Required Plug-In Terminal Strips

<table>
<thead>
<tr>
<th>DIN Rail Module</th>
<th>Number of Plug-In Terminal Strips Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 Poles</td>
</tr>
<tr>
<td>MSC</td>
<td>-</td>
</tr>
<tr>
<td>RDIO</td>
<td>-</td>
</tr>
<tr>
<td>RDISP</td>
<td>-</td>
</tr>
<tr>
<td>RTTEMP</td>
<td>1</td>
</tr>
<tr>
<td>QDIO</td>
<td>-</td>
</tr>
<tr>
<td>QAIQ 16/4</td>
<td>-</td>
</tr>
<tr>
<td>QCAN</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 33: Number of Plug-In Terminal Strips Required for Various DIN Rail Modules
11.9 Training Programs

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Remarks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software training, English</td>
<td>Content of the training:</td>
<td>B95992</td>
</tr>
<tr>
<td>MACS and IEC 61131</td>
<td>• Programming, testing, optimizing, and documenting IEC 61131 application programs
• Visualization of IEC 61131 application programs</td>
<td></td>
</tr>
<tr>
<td>Software training, German</td>
<td>Content of the training:</td>
<td>B95993</td>
</tr>
<tr>
<td>MACS and IEC 61131</td>
<td>• Programming, testing, optimizing, and documenting IEC 61131 application programs
• Visualization of IEC 61131 application programs</td>
<td></td>
</tr>
<tr>
<td>Hardware training, English</td>
<td>Content of the training:</td>
<td>B95994</td>
</tr>
<tr>
<td>MSC and extension modules</td>
<td>• Configuring and using MSC and extension modules
• Using control-engineering libraries
Knowledge about creating IEC 61131 application programs is required to participate in the hardware training. This knowledge is imparted in the MACS and IEC 61131 software training.</td>
<td></td>
</tr>
<tr>
<td>Hardware training, German</td>
<td>Content of the training:</td>
<td>B95995</td>
</tr>
<tr>
<td>MSC and extension modules</td>
<td>• Configuring and using MSC and extension modules
• Using control-engineering libraries
Knowledge about creating IEC 61131 application programs is required to participate in the hardware training. This knowledge is imparted in the MACS and IEC 61131 software training.</td>
<td></td>
</tr>
</tbody>
</table>

Table 34: Product Range – Training Programs
12 Appendix

12.1 Typographical Conventions

DANGER

Identifies safety instructions that are intended to warn of an immediate and impending danger to life and limb or major property damage. Failure to observe these safety instructions will lead inevitably to death, serious personal injury (disablement) or major property damage!

WARNING

Identifies safety instructions that are intended to warn of potential danger to life and limb or the potential for major property damage. Failure to observe these safety instructions might lead to death, serious personal injury (disablement) or major property damage!

CAUTION

Identifies safety instructions that are intended to warn of slight personal injury or minor property damage. Failure to observe these safety instructions might lead to slight personal injury or minor property damage.

• / – Identifies listings

⇔ Identifies references to another chapter, another page, table or figure in this manual

blue text Identifies a hyperlink within the PDF file

Identifies important information

1., 2., … Identifies steps in a procedure that should be performed in consecutive order

1, 2, … Identifies items in a figure that are explained separately

«WCAN» Identifies terminals or connectors (such as: «WCAN») and light emitting diodes (such as: «I/O1») of an M3000® module

'Frequency' Identifies parameters of the MACS development environment (such as: 'Frequency') and outputs of M3000® modules (such as: 'Outputs Enabled')
12.2 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>AGND</td>
<td>Analog Ground (Ground for the analog I/Os of the MSC)</td>
</tr>
<tr>
<td>CAL</td>
<td>CAN Application Layer according to CiA DS 201–207</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>CAN_GND</td>
<td>CAN Ground</td>
</tr>
<tr>
<td>CAN_H</td>
<td>CAN High (CAN bus signal (dominant high))</td>
</tr>
<tr>
<td>CAN_L</td>
<td>CAN Low (CAN bus signal (dominant low))</td>
</tr>
<tr>
<td>CAN_SHLD</td>
<td>CAN Shield (optional shield)</td>
</tr>
<tr>
<td>CFC</td>
<td>Continuous Function Chart (random-graphics functional chart editor; programming language for creating PLC programs)</td>
</tr>
<tr>
<td>CiA</td>
<td>CAN in Automation e. V. (international organization of manufacturers and users for CAN users; http://www.can-cia.org)</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DGND</td>
<td>Digital Ground (Ground for the digital sensor interface of the MSC)</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung e. V. (German Institute for Standardization; http://www.din.de)</td>
</tr>
<tr>
<td>DIS</td>
<td>Draft International Standard (preliminary standard)</td>
</tr>
<tr>
<td>DS</td>
<td>Draft Standard (draft standard)</td>
</tr>
<tr>
<td>E-Bus</td>
<td>Extension bus of DIN rail modules</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Alliance (http://www.eia.org)</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EN</td>
<td>Europa-Norm (European Standard)</td>
</tr>
<tr>
<td>EPROM</td>
<td>Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>FBD</td>
<td>Function Block Diagram (programming language for creating PLC programs)</td>
</tr>
<tr>
<td>Flash EEPROM</td>
<td>High speed EEPROM</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array (programmable logic component)</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface (MACS HMI: Visualization package which can be run without MACS)</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission (http://www.iec.ch)</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers, Inc. (http://www.ieee.org)</td>
</tr>
<tr>
<td>IL</td>
<td>Instruction List (programming language for creating PLC programs)</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IP</td>
<td>International Protection (protection type)</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
</tbody>
</table>

Table 35: Abbreviations (Section 1 of 3)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>Ladder Diagram (programming language for creating PLC programs)</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>M3000<sup>R</sup></td>
<td>Moog Control System</td>
</tr>
<tr>
<td>MACS</td>
<td>Moog Axis Control Software (Development environment according to IEC 61131 for solving complex control tasks)</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MSC</td>
<td>Moog Servo Controller (Control module for DIN top-hat rail mounting)</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NC</td>
<td>Not Connected</td>
</tr>
<tr>
<td>ND</td>
<td>Not Defined</td>
</tr>
<tr>
<td>PAdT</td>
<td>Programming And Diagnostic Tool (programming and diagnostic tool in IEC 61131, here: PC on which the MACS development environment is installed)</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PE</td>
<td>Protective Earth</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>Q-Modules</td>
<td>DIN rail modules for local extension of MSCs (connected over E-bus)</td>
</tr>
<tr>
<td>Q-Connector</td>
<td>40 pole lateral connector of DIN rail modules</td>
</tr>
<tr>
<td>QAIO</td>
<td>Analog I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus)</td>
</tr>
<tr>
<td>QCAN</td>
<td>CAN extension module which can be used to make available the LocalCAN bus of an E-bus group for external CAN bus network stations (over a D-sub front panel connector)</td>
</tr>
<tr>
<td>QDIO</td>
<td>Digital I/O extension module for local extension of the inputs and outputs of MSCs (connection over E-bus)</td>
</tr>
<tr>
<td>R-Modules</td>
<td>Remote modules such as RDIO, RTEMP, and RDISP (connection over CAN bus)</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory (read and write memory that loses its contents when power is removed)</td>
</tr>
<tr>
<td>RD</td>
<td>Receive Data</td>
</tr>
<tr>
<td>RDIO</td>
<td>Remote module with digital I/Os and CANopen interface (connection over CAN bus)</td>
</tr>
<tr>
<td>RDISP</td>
<td>Remote Display (display and operating terminal with TIA/EIA 232 and CANopen interface (connection over CAN bus))</td>
</tr>
<tr>
<td>REF</td>
<td>Reference voltage</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction Set Computer</td>
</tr>
<tr>
<td>RTEMP</td>
<td>Temperature control module with TIA/EIA 232 and CANopen interface (connection over CAN bus)</td>
</tr>
<tr>
<td>SELV</td>
<td>Safety Extra-Low Voltage (according to DIN EN 60950-1)</td>
</tr>
<tr>
<td>SFC</td>
<td>Sequential Function Chart (programming language for creating PLC programs)</td>
</tr>
<tr>
<td>SHLD</td>
<td>Shield</td>
</tr>
<tr>
<td>SIO</td>
<td>Serial I/O (serial interface of the MSC)</td>
</tr>
<tr>
<td>SSI</td>
<td>Synchronous Serial Interface (digital interface for transferring positioning information, like with position transducers)</td>
</tr>
<tr>
<td>ST</td>
<td>Structured Text (programming language for creating PLC programs)</td>
</tr>
<tr>
<td>TD</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>TIA</td>
<td>Telecommunications Industry Association (http://www.tiaonline.org)</td>
</tr>
<tr>
<td>TPU</td>
<td>Time Processing Unit (programmable microprocessor that processes time functions independently of the CPU)</td>
</tr>
</tbody>
</table>

Table 35: Abbreviations (Section 2 of 3)
12.3 Quoted Standards

12.3.1 CiA DS

CiA DS 201–207
CiA Draft Standard: CAN Application Layer (CAL)

CiA DS 301
CiA Draft Standard: CANopen Communication Profile for Industrial Systems – Based on CAL

CiA DS 401
CiA Draft Standard: CANopen Device Profile for Generic I/O Modules

12.3.2 DIN and DIN EN

DIN 41652
Rack and Panel Connectors, Trapezoidal, Round Contacts 1 mm

DIN EN 60715
Dimensions of Low Voltage Switchgear and Controlgear – Standardized Mounting on Rails for Mechanical Support of Electrical Devices in Switchgear and Controlgear Installations

DIN EN 60950-1
Information Technology Equipment – Safety – Part 1: General Requirements

DIN EN 61000-6-1
Electromagnetic Compatibility (EMC) – Part 6-1: Generic Standards; Immunity for Residential, Commercial and Light-Industrial Environments

DIN EN 61000-6-2
Electromagnetic Compatibility (EMC) – Part 6-2: Generic Standards; Immunity for Industrial Environments

DIN EN 61000-6-3
Electromagnetic Compatibility (EMC) – Part 6-3: Generic Standards; Emission Standard for Residential, Commercial and Light-Industrial Environments

DIN EN 61000-6-4
Electromagnetic Compatibility (EMC) – Part 6-4: Generic Standards; Emission Standard for Industrial Environments

DIN EN 60204
Safety of Machinery – Electrical Equipment of Machines
12.3.3 IEC

IEC 60068
 Environmental Testing

IEC 60068-2-6
 Environmental Testing – Part 2: Tests; Test Fc: Vibration (Sinusoidal)

IEC 60068-2-27
 Environmental Testing – Part 2: Tests; Test Ea and Guidance: Shock

IEC 60068-2-31
 Environmental Testing – Part 2: Tests; Test Ec: Drop and Topple, Primarily for Equipment-Type Specimens

IEC 60364-4-44
 Electrical Installations of Buildings – Part 4-44: Protection for Safety – Protection against Voltage Disturbances and Electromagnetic Disturbances

IEC 60529
 Degrees of Protection Provided by Enclosures (IP Code)

IEC 60664
 Insulation Coordination for Equipment within Low Voltage Systems

IEC 60801-2

IEC 61131
 Programmable Controllers

IEC 61131-1
 Programmable Controllers – Part 1: General Information

IEC 61131-2
 Programmable Controllers – Part 2: Equipment Requirements and Tests

IEC 61131-3
 Programmable Controllers – Part 3: Programming Languages

IEC 61131-4
 Programmable Controllers – Part 1: User Guidelines

12.3.4 ISO/DIS

ISO/DIS 11898
 Road Vehicles – Controller Area Network (CAN)

12.3.5 TIA/EIA

TIA/EIA 232 (previously RS 232)
 Interface Between Data Terminal Equipment and Data Circuit – Terminating Equipment Employing Serial Binary Data Interchange

TIA/EIA 422 (previously RS 422)
 Electrical Characteristics of Balanced Voltage Digital Interface Circuits

TIA/EIA 485 (previously RS 485)
 Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems
13 Index

A
«A1», «A2», see LEDs of the MSC
Abbreviations used • 127
Accessories, see product range
Addresses
Moog GmbH • A
Air humidity, relative
permissible for operating the MSC • 70
permissible for transportation and storage of
M3000® modules • 66
MSC • 70
Air pressure
permissible for transportation and storage of
M3000® modules • 66
MSC • 70
Ambient temperature
permissible for operating the MSC • 70
permissible for transportation and storage of
M3000® modules • 66
MSC • 70
«Ao1b», «Ao2b», see LEDs of the MSC
Application programs for MSCs
creating with MACS • 24
Arrangement of DIN rail modules
between cable conduits • 31
minimum distances between control groups • 31
on a vertical mounting plate • 30
Attachment screws for the license key of the MSC,
see license key of the MSC: attachment screws
«Aux1», «Aux2», see LEDs of the MSC

B
«B1», «B2», see LEDs of the MSC
Basic wiring diagrams
analog I/Os of the MSC
analog input of the MSC • 102
analog output of the MSC • 99
digital I/Os of the MSC
digital input of the MSC • 96
digital output of the MSC • 93
Block diagrams
MSC • 71
Booting the MSC, see resetting the MSC
Brands, see trademarks

C
CAN bus • 50–55
characteristics • 50
linear structure • 53
CAN bus accessories
part numbers • 123
CAN bus interface cables,
see interface cables: CAN bus interface cables
CAN bus interfaces
MSC • 51, 59, 113–114
CANopen node-ID • 51, 82, 114
«LCAN» (LED of the MSC for displaying LocalCAN
transmission activity • 78, 113
«WCAN» (LED of the MSC for displaying WideCAN
transmission activity • 77, 113
«WCAN» (MSC front panel connectors) • 72, 113
terminal assignment • 76
Q-modules • 51, 59
R-modules • 51, 59
CAN bus network node, see CAN bus network stations
CAN bus networks
permissible cable lengths • 54
permissible number of network stations • 53
permissible stub cable lengths • 54
potential equalization • 52, 53
suitable cables • 55
wiring • 52
CAN bus network stations
permissible number of network stations • 53
CAN bus termination resistors • 52, 53
MSC’s termination resistor, switchable termination resistor
of the LocalCAN interface • 114
«TRM» (LED of the MSC) (indicates that the resistor
is switched on) • 77
part numbers • 123
CAN extension module, see Q-modules: QCAN
CANopen • 51
CANopen node-ID of the MSC • 82, 114
profiles for various device classes • 51
CE labeling of the M3000® modules • A, 4
Cleaning, safety instructions • 10, 64
Communication between MSC and MACS • 80
MACS communication parameters
Ethernet interface • 81
MACS interface • 80
programming cable • 48
safety instructions • 11, 80
Configuration of the MSC • 80
Connector assignment, see terminal assignment
Contact address • A
Contamination level
M3000® modules • 66
MSC • 70
Control groups
E-bus groups • 60
LocalCAN bus groups • 61
WideCAN bus groups • 62
Control module, see MSC
Control system, see M3000®
Copying prohibition for this manual • A
Copyright
for software that is installed on M3000® products • 5
for this manual • A
Corrosion, insensitivity to see insensitivity to corrosion
CPRDISP, see R-modules: software for R-modules
CPRTEMP, see R-modules: software for R-modules
Current, maximum admissible current for the power supply
terminals of M3000® modules • 42
D

«D1»…«D7», see LEDs of the MSC
Data retention of the MSC • 68
Development environment, see MACS
Dimensions
- DIN rail modules • 29
- MSC • 68, 69
DIN rail modules
- arrangement between cable conduits • 31
- on a vertical mounting plate • 30
- dimensions • 29
- front view • 28
- minimum distances between control groups • 31
- mounting on DIN top-hat rails • 32
- networking • 59–63
- control groups
 - E-bus groups • 60
 - LocalCAN bus groups • 61
 - WideCAN bus groups • 62
- removing from the DIN top-hat rail • 35
- views of the module • 28
DIN top-hat rail TH 35-7.5 • 30
Disclaimer
- liability, see liability: exclusion of liability
- warranty, see warranty: exclusion of warranty
Display and operating terminal,
- see R-modules: RDISP
Disposing M3000® modules • 4
Disturbance suppression of MSC’s digital inputs • 96
Drop height, permissible
- M3000® modules • 66
- MSC • 70
Duplication prohibition for this manual • A

Environmental conditions
- for operating M3000® modules • 26
- for the MSC • 70
- climatic conditions • 70
- electrical conditions and requirements • 70
- mechanical conditions and requirements • 70
- for transporting and storing M3000® modules • 66
- limitations of using M3000® modules • 27
- requirements from IEC 61131-2 • 26
- safety instructions • 7, 26, 69
Environmental protection
- disposing M3000® modules • 4
- no harmful emissions from M3000® modules
 (when used properly) • 4
- «Error>, see LEDs of the MSC
ESD
- safety instructions • 7
Ethernet
- communication between MSC and MACS, communication
 parameters of the Ethernet interface • 81
- Ethernet interface of the MSC • 67
- communication parameters • 81
- terminal assignment • 77
- IP address of the MSC • 81, 82
- LEDs of the MSC
 - «LAN» (displays Ethernet activity) • 78
 - «Link» (displays Ethernet link pulse) • 78
- networks
 - with exactly 2 network stations • 46
 - with more than 2 network stations • 46
Ethernet interface cables,
- see interface cables: Ethernet interface cables
Extension modules
- CAN extension module, see Q-modules: QCAN
- I/O extension modules, see Q-modules: QAIO and QDIO

E

E-bus • 55–58
- clock frequency • 57
- configuration in the PLC configuration of MACS • 112
- «E-Bus>, see LEDs of the MSC
E-bus communication
- duration of message transmission • 57
- example • 58
- message update rate • 57
- safety instructions • 9, 57
- scope of the E-bus messages • 58
- starting the communication within E-bus groups • 56
E-bus groups • 60
- permissible masters • 56
- permissible slaves • 56
E-bus interfaces
- MSC • 59, 112
 - «E-Bus» (LED of the MSC for displaying E-bus
 transmission activity) • 78
Q-modules • 59
R-modules • 59
Electromagnetic Compatibility • 4
EMC • 4
Emissions, see environmental protection

F

«F-Bus» (front panel connector of the MSC),
- see field bus interface of the MSC: «F-Bus»
Field bus interface of the MSC • 67
- «D1»…«D7», see LEDs of the MSC
- «F-Bus» (MSC front panel connectors) • 72
- terminal assignment • 77
Figures, list of • vii
Front panel
- DIN rail modules • 28
- MSC • 72
Front view
- DIN rail modules • 28
- MSC • 72

G

Grounding
- CAN bus networks • 52
- CAN bus termination resistor with signal grounding • 52, 53
- grounding concept • 37
- signal grounding of DIN rail modules • 37, 41
Identification of M3000® modules • 22

IDLE, see states of the MSC’s internal module control

Incremental sensors connecting to the MSC • 111–112
terminal designations on sensors • 112

Inputs of the MSC, see I/Os of the MSC

Insensitivity to corrosion M3000® modules • 66
MSC • 70

Installation • 36
safety instructions • 8, 30, 32, 34, 39, 42

Insulation resistance digital inputs of the MSC • 96
digital outputs of the MSC • 98
MSC • 70

Interface cables CAN bus interface cables • 54
part numbers • 123
permissible cable lengths in CAN bus networks • 54
permissible stub cable lengths in CAN bus networks • 54
suitable cables • 55
Ethernet interface cables • 47
part numbers • 123
programming cable • 48
serial interface cables • 47–49

Interfaces of the MSC • 67
CAN bus interfaces, see CAN bus interfaces: MSC
E-bus interfaces, see E-bus interfaces: MSC
Ethernet interface, see Ethernet: Ethernet interface of the MSC
field bus interface, see field bus interface of the MSC
sensor interfaces, digital, see sensor interfaces of the MSC, digital
serial interfaces, see interfaces of the MSC, serial
terminal assignment • 73–77

Interfaces of the MSC, serial • 115
MACS interface • 115
Communication between MSC and MACS • 80
«MACS» (MSC front panel connector) • 72, 77
«Rx2» and «Tx2» (LEDs for displaying receive/transmission activity) • 78
SIO interface • 115
«Rx1» and «Tx1» (LEDs for displaying receive/transmission activity) • 78
«SIO» (MSC front panel connector) • 72, 76

I/O extension modules, see Q-modules: QAIO and QDIO
«I/O1», «I/O8», see LEDs of the MSC

I/Os of the MSC • 68
analog I/Os, see I/Os of the MSC, analog
digital I/Os, see I/Os of the MSC, digital
‘Outputs Enabled’ output • 116
«OutEN» (LED of the MSC for displaying the states of all outputs and E-bus communication) • 78, 116
safety instructions • 13, 116
reference voltage output • 68, 101

I/Os of the MSC, analog • 68, 99–108
analog inputs • 102–108
basic wiring diagram • 102
connecting analog sensors • 104–108
specifications • 102
analog outputs • 99–101
basic wiring diagram • 99
specifications • 99
wire fault monitoring of the analog current outputs • 101
wire fault display LEDs • 78
terminal assignment • 74–78

I/Os of the MSC, digital • 68, 91–98
digital inputs • 96–98
basic wiring diagram • 96
disturbance suppression • 96
insulation resistance • 98
pulse detection • 96
specifications • 97
U/I working ranges • 98
digital outputs • 93–96
basic wiring diagram • 93
insulation resistance • 96
load connection • 95
open collector outputs • 93
open emitter outputs • 93
overload behavior • 94
overload protection • 94
specifications • 95
«I/O1»…«I/O8» (LEDs of the MSC for displaying the operational state of the digital I/Os) • 77, 91
power supply • 92
terminal assignment • 73

IP address of the MSC • 81, 82
Item number, see part numbers

L

«L1+», see LEDs of the MSC
«LAN», see LEDs of the MSC
«LCAN», see LEDs of the MSC
«LED1»…«LED3», see LEDs of the MSC
LEDs of the MSC • 72, 77–79
«A1», «A2» (wire fault display for digital sensor interfaces) • 78, 108
«Ao1b», «Ao2b» (wire fault display for analog current outputs) • 78, 101
«Aux1», «Aux2» (activated by application program) • 78
«B1», «B2» (wire fault display for digital sensor interfaces) • 78, 108
«D1»…«D7» (field bus) • 78
«EBus» (displays E-bus transmission activity) • 78
«Error» (error display) • 78, 79
«I/O1», «I/O8» (display the operational state of the digital I/Os) • 77, 91
«L1+» (displays the state of the power supply for the internal electronics) • 77
«LAN» (displays Ethernet activity) • 78
«LCAN» (displays LocalCAN transmission activity) • 78, 113
«LED1»…«LED3» (activated by application program or error display) • 78, 79
«Link» (displays Ethernet link pulse) • 78
«OutEN» (displays the states of all outputs and E-bus communication) • 78
«Rx1» and «Tx1» (displays receive/transmission activity of the SIO interface) • 78
«Rx2» and «Tx2» (displays receive/transmission activity of the MACS interface) • 78
«TRM» (indicates that the LocalCAN interface’s termination resistor is switched on) • 77, 114
«Tx1», «Tx2» (error display) • 79
«Tx1» und «Rx1» (displays receive/transmission activity of the SIO interface) • 78
«Tx2» and «Rx2» (displays receive/transmission activity of the MACS interface) • 78
«WCAN» (displays WideCAN transmission activity) • 77, 113
«Z1», «ZZ» (wire fault display for digital sensor interfaces) • 78, 108
Liability
exclusion of liability • 3
exclusion of liability for this manual • 1

License key of the MSC • 23, 81–82
attachment screws • 82
features provided by the various license keys • 121
license key slot «LK» • 72, 83, 84
mounting • 83
required tool • 82
part numbers • 121
removing • 84
required tool • 82
run-time license • 82
safety instructions • 12, 81, 82, 83

«Link», see LEDs of the MSC
List of figures • vii
List of tables • vi

«LK» (on the front panel of the MSC),
see license key of the MSC: license key slot «LK»

Load connection of MSC’s digital outputs • 95
LocalCAN • 15
LocalCAN bus groups • 61
LocalCAN bus interface of the MSC • 51, 59, 113
make LocalCAN bus available over QCAN • 14, 20
Locating pin
DIN rail modules • 28
MSC • 72

Locking slide
DIN rail modules • 28
MSC • 72

Low voltage detection of the MSC • 87
behavior of the MSC during
long duration low voltage conditions • 89
power failures • 88
short duration low voltage conditions • 90
response time • 87
threshold limit • 87

MACS • 24
communication between MSC and MACS • 80
communication parameters
Ethernet interface • 81
MACS interface • 80
configuration of the MSC • 80
MACS HMI (visualization package) • 25, 122
part number • 122
programming languages • 25
programming the MSC • 80
scope of functionality • 24
software maintenance contract • 122

«MACS» (front panel connector of the MSC),
see interfaces of the MSC, serial: MACS interface
MACS HMI, see MACS: MACS HMI
MACS interface of the MSC,
see interfaces of the MSC, serial: MACS interface

Maintenance • 65
safety instructions • 10, 64
Maintenance contract for MACS,
see MACS: software maintenance contract
Manual, see user manual M3000® and MSC
Manufacturer’s address • A
Maximum admissible current for the power supply
terminals of M3000® modules • 42
Memory of the MSC • 68
Module width of an M3000® module, see dimensions
Moog Authentic Repairs, see repair: Moog Authentic Repairs
Moog Authentic Repair seal, see repair: repair seal
Mounting
DIN rail modules on DIN top-hat rails • 32
license key of the MSC • 83
required tool • 82
MSC • 18, 67–117
as master of E-bus groups • 56
block diagram • 71
environmental conditions for operation • 70
climatic conditions • 70
electrical conditions and requirements • 70
mechanical conditions and requirements • 70
front panel • 72
front view • 72
part numbers • 118
view of the module • 72

M

M_WATCHDOG, see watchdog of the MSC

M3000® modules, see M3000® modules
network topology with CAN bus • 15
system architecture • 15, 16
system overview • 14

M3000® modules • 18–22
DIN rail modules, see DIN rail modules
identification • 22
I/O extension modules, see Q-modules: QAOI and QDIO
MSC, see MSC
networking • 59–63
QAOI 16/4, see Q-modules: QAOI 16/4
QCAN, see Q-modules: QCAN
QDIO, see Q-modules: QDIO
Q-modules, see Q-modules
RDIO, see R-modules: RDIO
RDISP, see R-modules: RDISP
remote modules, see R-modules
R-modules, see R-modules
RTemp, see R-modules: RTEMP

M3000® Starter Kit • 17, 118

N

Nameplate
M3000® modules • 22
MSC • 117

Networking M3000® modules
CAN bus networks, see CAN bus networks
Ethernet networks, see Ethernet: networks
networking DIN rail modules,
see DIN rail modules: networking

Network nodes, see CAN bus network stations

Networks
CAN bus networks, see CAN bus networks
Ethernet networks, see Ethernet: networks
M3000® system architecture (example) • 16
networking DIN rail modules,
see DIN rail modules: networking

© 2004 Moog GmbH
User Manual M3000® and MSC (B95906-001; Version 1.1; 06/04)
O

‘OFF’, see states of the MSC’s internal module control
Open collector output of the MSC,
see I/Os of the MSC, digital: digital outputs
Open emitter output of the MSC,
see I/Os of the MSC, digital: digital outputs
Operating elevation •70
Operating instructions, see user manual M3000® and MSC
Order number, see part numbers
Original packaging is to be retained! •3
Oscillations, permissible for MSC •70
«OutEN», see LEDs of the MSC
‘Outputs Enabled’, see I/Os of the MSC: ‘Outputs Enabled’ output
Outputs of the MSC, see I/Os of the MSC
Overall width of an M3000® module, see dimensions
Overload behavior of MSC’s digital outputs •94
Overload protection of MSC’s digital outputs •94

P

Packaging
Original packaging is to be retained! •3
Part numbers
CAN bus accessories •123
CAN bus termination resistors •123
interface cables •123
license key of the MSC •121
M3000® and MSC user manual •140
M3000® Starter Kit •118
MSC •118
plug-in terminal strips for DIN rail modules •124
power supply device •121
Q-modules •119
R-modules •120
software
MACS •122
software for R-modules •122
software maintenance contract •122
training programs •125
Peer-to-peer connection of 2 network stations (Ethernet) •46
Performance characteristics of the MSC •68
interfaces, see interfaces of the MSC
I/Os, see I/Os of the MSC
‘Outputs Enabled’ output,
see I/Os of the MSC: ‘Outputs Enabled’ output
watchdog, see watchdog of the MSC
Personnel, selection and qualification
only qualified users may work with and on M3000® •2
Pin assignment, see terminal assignment
Place of storage for manuals •1
Plug assignment, see terminal assignment
Plug-in terminal strips for DIN rail modules
connection methods •45
connectors for plug-in-terminal strips
front view of the DIN rail module •28
«X1»,…«X6» (connectors of the MSC) •72
terminal assignment •73–75
part numbers •124
required number •124
side view of DIN rail modules with plug-in-terminal strips •28
spring loaded terminals •45
Potential equalization in CAN bus networks,
see CAN bus networks: potential equalization
Power consumption by DIN rail modules •39

Power supply •38–44
characteristics •38
connecting M3000® modules •40
digital I/Os of the MSC •92
low voltage detection of the MSC,
see low voltage detection of the MSC
maximum admissible current •42
MSC •70, 85–90
«L1/+» (LED for displaying the state of the power supply
for the internal electronics) •77
power supply device, part number •121
power supply failure, behavior of the MSC •68, 86, 88
rated voltage •38
safety extra-low voltage SELV •38
sensors •42–44
switching off the power supply, behavior of the MSC •86
switching on the power supply, behavior of the MSC •86
Processor of the MSC •68
Product range •118–125
Programming cable •48
Programming languages in MACS •25
Programming the MSC •80
programming cable •48
Project planning •36
safety instructions •8, 39, 42
Proper operation, see proper use
Proper use •2
safety related systems •2
Protection class of the MSC •70
Pulse detection of MSC’s digital inputs •96

Q

QAIO 16/4, see Q-modules: QAIO 16/4
QCAN, see Q-modules: QCAN
Q-connector
40 pole connector of the E-bus interface •55
front and side views of DIN rail modules •28
front view of the MSC •72
QDIO, see Q-modules: QDIO
Q-modules •19
part numbers •119
power consumption •39
QAIO 16/4 •19
QCAN •20
QDIO •19
Qualified users, see personnel, selection and qualification

R

Rated voltage of the power supply •38
RDIO, see R-modules: RDIO
RDISP, see R-modules: RDISP
Rebooting the MSC, see resetting the MSC
Reference voltage output of the MSC •68, 101
Release date of this manual •1
Remote modules, see R-modules
Removing
DIN rail modules from the DIN top-hat rail •35
license key of the MSC •84
required tool •82
Repair •65
Moog Authentic Repairs •65
repair seal •65
safety instructions •10, 64
S

Safety extra-low voltage SELV • 38

Safety instructions
- arrangement of DIN rail modules • 30
- cleaning • 10, 64
- communication between MSC and MACS • 11, 80
- environmental conditions • 7, 26, 69
- ESD • 7
- installation • 8, 30, 32, 34, 39, 42
- license key of the MSC • 12, 81, 82, 83
- maintenance • 10, 64
- mounting
 - DIN rail modules • 32
 - license key of the MSC • 82
- 'Outputs Enabled' output of the MSC • 13, 116
- project planning • 8, 39, 42
- removing
 - DIN rail modules • 34
 - license key of the MSC • 83
- repair • 10, 64
- reset button of the MSC • 12, 84
- resetting the MSC • 13, 85
- safety related systems • 2, 6
- service • 10, 64
- shutdown • 10, 64
- storing M3000® modules • 11, 66
- transporting M3000® modules • 11, 66
- typographical conventions • 6, 126
- update rate of E-bus messages • 9, 57

Safety related systems • 2
- safety instructions • 2, 6
- 'SAVE', see states of the MSC's internal module control

Sensor interfaces of the MSC, digital • 108–112
- connecting incremental sensors • 111–112
- connecting SSI sensors • 109–110
- connection diagram: MSC in master mode • 109
- connection diagram: MSC in slave mode • 110
- terminal assignment • 73
- wire fault monitoring • 108
- wire fault display LEDs • 78, 108

Sensors
- connecting analog sensors to the MSC • 104–108
- connecting analog sensors to the MSC • 111–112
- wire fault monitoring • 108
- connecting signal cables over plug-in terminal strips • 45
- connecting SSI sensors to the MSC • 109–110
- wire fault monitoring • 108
- connecting to the power supply • 42–44

Service
- cleaning, see cleaning
- maintenance, see maintenance
- repair, see repair
- safety instructions • 10, 64
- servicing, see maintenance

Servicing, see maintenance

Shielding signal cables of analog sensors • 104

Shock, permissible for MSC • 70

Shutdown, safety instructions • 10, 64

Signal cables
- connection over plug-in terminal strips • 45
- shielding when connecting analog sensors • 104

Signal grounding
- CAN bus termination resistor with signal grounding, see grounding

DIN rail modules, see grounding

«SIO» (front panel connector of the MSC), see interfaces of the MSC, serial: SIO interface

SIO interface of the MSC, see interfaces of the MSC, serial: SIO interface

Software
- copyright • 5
- development environment MACS, see MACS
- MACS, see MACS
- software for R-modules, see R-modules: software for R-modules

Software maintenance contract for MACS, see MACS: software maintenance contract

Spring loaded terminals, see plug-in terminal strips for DIN rail modules

SSI sensor
- connecting to the MSC • 109–110
- connection diagram
 - MSC in master mode • 109
 - MSC in slave mode • 110

Standards
- overview of quoted standards • 129–130

Starter kit, see M3000® starter kit

States of the MSC's internal module control
- 'IDLE' • 88
- 'OFF' • 88
- 'RUN' • 88
- 'SAVE' • 88

Storing M3000® modules
- environmental conditions • 66
 - air pressure, permissible • 66
 - ambient temperature, permissible • 66
 - contamination level • 66, 70
 - insensitivity to corrosion • 66, 70
 - relative air humidity, permissible • 66
- safety instructions • 11, 66

Storing manuals, place of storage • 1

Styles and symbols used in this manual, see typographical conventions

Symbols and styles used in this manual, see typographical conventions

System, see M3000®

System architecture, see M3000®: system architecture

System overview, see M3000®: system overview
Index

T

Table of contents • i
Tables, list of • vi
Temperature control module,
see R-modules: RTEMP
Terminal assignment
M3000® modules • 22
MSC • 73–77
Termination resistors,
see CAN bus termination resistors
TIA/EIA *** interface cable,
see interface cables: serial interface cables
Top-hat rail, see DIN top-hat rail TH 35-7.5
Trademarks • 5
Training programs, part numbers • 125
Transporting M3000® modules
environmental conditions • 66
air pressure, permissible • 66
ambient temperature, permissible • 66
contamination level • 66, 70
insensitivity to corrosion • 66, 70
relative air humidity, permissible • 66
safety instructions • 11, 66
«TRM», see LEDs of the MSC
«Tx1», «Tx2», see LEDs of the MSC
Type plate, see nameplate
Typographical conventions • 126

U

U/I working ranges MSC’s digital inputs • 98
User manual M3000® and MSC
abbreviations used, see abbreviations used
copyright • A
date of release • 1
duplication prohibition • A
exclusion of liability • 1
place of storage • 1
reproduction prohibition • A
reservation of changes • A, 1
styles and symbols used,
see typographical conventions
typographical conventions,
see typographical conventions
version number • 1
Users, qualified, see personnel, selection and qualification

V

Version number of this manual • 1
View of the module
DIN rail modules • 28
MSC • 72
Visualization package, see MACS: MACS HMI

W

Warranty, exclusion of warranty • 3
Watchdog of the MSC • 115
«WCAN» (front panel connectors of the MSC),
see CAN bus interfaces: MSC
«WCAN» (LED), see LEDs of the MSC
Weight of the MSC • 68
WideCAN • 15
WideCAN bus groups • 62
WideCAN bus interface of the MSC • 51, 59, 113
terminal assignment of the «WCAN» front panel
connectors • 76
Wire fault display LEDs of the MSC
LEDs for digital sensor interfaces) • 78, 108
«Ao1b» and «Ao2b» (wire fault display LEDs for analog
current outputs) • 78, 101
Wire fault monitoring
current outputs, analog • 101
wire fault display LEDs • 78, 101
sensor interfaces, digital • 108
wire fault display LEDs • 78, 108
Wiring of CAN bus networks • 52

X

«X1»…«X6» (Plug-in terminal strip connectors of the MSC)
front view of the MSC with plug-in terminal-strip
connectors • 72
terminal assignment • 73–75

Z

«Z1», «Z2», see LEDs of the MSC