ELECTROHYDROSTATIC PUMP SYSTEM (EPS)

Rev. A, November 2023

MODULAR AND ENERGY-EFFICIENT DRIVE SOLUTION WITH A HIGH DEGREE OF FREEDOM FOR USERS AND OPERATORS.

WHAT MOVES YOUR WORLD

If demanding motion systems and highly flexible designs are required, then Moog expertise is here to assist you. Through our collaborative approach, our creativity and first class technology, we help you to solve even the most complex motion tasks, increase the performance of your products and create solutions that far exceed today 's expectations.

INTRODUCTION	2
Electrohydrostatic Pump System (EPS)	3
Technology Overview	4
Features and Benefits	5
General Technical Data	6
Pre-pressure Types	8
TECHNICAL DATA	9
Dimensions Size 19	9
Dimensions Size 32	11
Dimensions Size 80	13
Dimensions Size 140	15
Dimensions Size 250	17
ORDERING INFORMATION	20
Accessories	20
About Moog	21
Ordering Code	22

This catalog was written for readers with technical knowledge. Users should check the suitability of the products described here, to ensure that all of the general conditions required for the function and safety of the system are fulfilled. All products described here are subject to technical alteration. If you have any further enquiries, please contact Moog. Moog is a registered trademark of Moog Inc. and its subsidiaries. If not otherwise stated, then all brand names listed here are the property of Moog Inc. and its subsidiaries.

The complete liability disclaimer can be found at www.moog.com/literature/disclaimers.

Current information is available from www.moog.com/industrial or from your nearest Moog office.

ELECTROHYDROSTATIC PUMP SYSTEM (EPS)

The Electrohydrostatic Pump System (EPS) enhances Moog's portfolio of electrohydrostatic components and drive systems by providing a modular and energyefficient drive solution that offers users and operators a remarkable level of flexibility. It is an excellent choice for industrial machine builders in search of compact and energy-saving alternatives to conventional hydraulic or electromechanical motion control solutions.

Comprised of an Electrohydrostatic Pump Unit (EPU) and a standardized manifold with a hydraulic accumulator, the EPS is a complete system that does not include an actuator. It can be easily integrated into machine concepts, whether they are retrofit projects or new developments.

The EPS represents a compelling solution for the industrial machine manufacturing market, combining the advantages of electrohydraulic and electromechanical technology. Automation engineers who prioritize energy efficiency, environmental cleanliness, and the high-power density of electrohydraulic actuation will find the EPS to be an attractive solution.

The standardized system allows the use of existing customer components such as hydraulic cylinders. The standardized connections and components facilitate easy integration and scaling, reducing development, design and assembly times for faster time-to-market.

Key features of the EPS include outstanding energy efficiency and virtually wearless operation. Its high flexibility, scalability, and adaptability make it suitable for a wide range of industrial machinery.

The EPS offers a versatile solution, positioned between Moog's EPU and Electrohydrostatic Actuation Systems (EAS), empowering customers to tailor the system to their specific requirements. It provides a range of motor-pump units and power classes, along with various cooling options and additional features like functional safety.

TECHNOLOGY OVERVIEW

In electromechanical actuation systems a frequencycontrolled servo motor drives a mechanical actuator via a mechanical gearbox. In electrohydraulic resistance control systems, a central hydraulic power unit (HPU) drives one or more hydraulic actuators (cylinder, hydraulic motor), controlled by servo or proportional valves. Electrohydrostatic Pump Systems (EPS) feature a frequency-controlled servo motor that can drive a hydraulic actuator via hydrostatic transmission, thereby combining the advantages of electromechanical and electrohydraulic technology.

Principally, this allows for the electrical coupling of several machine axes in a common electrical intermediate circuit (DC-Bus), and enables demand driven energy distribution that includes an energy recovery capability.

Depending on the required performances, installation interfaces, work environment, we support the customer in selection of the most appropriate solution. Our global engineering teams can help customers select and integrate these standardized modules able to meet a range of unique application requirements across a number of industries.

Optimal design of the system peripherals can reduce the size and power of electronic components thus the connected load. In combination with an intelligent energy management system, this leads to significant savings in total energy consumption. Moog offers a wide range of suitable power electronics and software solutions to exploit this potential.

Applications

The EPS is highly versatile and compatible with various industrial machinery. It can be effectively utilized across a wide range of applications, including but not limited to:

- Die cushion systems
- Test and simulation platforms
- Metal forming and presses
- Hydraulic pressure intensifiers
- Marine and offshore
- Mobile machines with hybrid or electric drive concepts
- Plastics machinery
- Heavy industry

Electrohydrostatic Portfolio

Depending on our customers' needs, we offer a range of options within our portfolio. In terms of scope and flexibility, the EPS positions itself between the EPU and the Electrohydrostatic Actuation Systems (EAS).

Moog product	Advantages
Compact EAS, Modular EAS, Customized EAS	Low hydraulic know-how requiredPlug and Play solutions
EPS	 Flexibility in system design and integration
	Use of customer components
	 Cost optimization due to standardization
EPU	Customer can develop and build system by himself
	 High flexibility in machine integration

FEATURES AND BENEFITS

Features	Benefits
High force capability and power density	Provides an attractive alternative to EH and EM actuation, allowing for more efficient and effective machine operation
Low noise emission	Quieter machine operation for improved working conditions and reduced noise pollution
More environmentally clean due to lower oil requirement	Lower maintenance and operating costs, as well as reduced fire insurance costs, while also being more environmentally friendly
Wear-resistant and overload-safe drive	Longer lifetime of drive components and moving parts, as well as quick and easy machine or equipment restarts after an overload occurs
Few electrical interfaces	Low startup effort and cost, with no need for staff with knowledge of hydraulics, reducing overall costs
Decentralized drive system	Self-contained system that eliminates the need for an external hydraulic power pack and elaborate piping, reducing procurement and maintenance costs
Simple and compact design with no classic valve and control technology	Less energy required for operation, reduced commissioning, training, and maintenance costs, and a smaller machine footprint
One base manifold for each size	Reduced spare unit and spare part costs
Filtering and cooling connection prepared	Direct connection of filtering and cooling unit possible, increasing product lifetime due to filtering and bringing away internal losses
Closed and half open system possible	Easy to integrate in existing infrastructure
Standardization in regards of used components	Fast lead time and streamlined maintenance and repairs
Direct connection with cylinder possible	Enables a compact and self-contained system design
High energy efficiency	Low energy consumption with low cooling requirements

GENERAL TECHNICAL DATA

Size			019	032	080	140	250		
Maximun	Maximum pump flow		85 l/min (22.5 gpm)	118 l/min (32.2 gpm)	216 l/min (57.1 gpm)	322 l/min (85.1 gpm)	450 l/min (118.9 gpm)		
Maximun	n system pr	essure	350 bar (5,076	350 bar (5,076 psi)					
Maximun	n pump hou	sing pressure	10 bar (145 psi)					
Maximun	n pre pressi	ure	 10 bar (145 psi) for self-contained system 25 bar (363 psi) for half-open system 						
Motor Pu	ımp Unit	Pump version	Radial Piston P	ump, fixed or du	al displacement				
		Motor version	Brushless serve	o motor, natural,	fan or liquid coo	led (oil/water)			
Temperat	ture range	Ambient	-15 to +40 °C (5	5 to 104 °F)					
		Fluid	-15 to +80 °C (5	5 to 176 °F)					
Seal mat	erial		NBR, FKM						
Pre press	sure type		Self-contained	system, half-op	en system				
Operatin	g fluid		Mineral oil acco	ording to DIN 51!	524, HFD and oth	ners upon reques	st		
Viscosity	/		Permissible vis	cosity operation	al range from 12	2 to 100 mm²/s (12 to 100 cSt).		
System f	iltration		NAS 1638,ISO 4406 cl	class 9 lass 20/18/15; o	btained with filt	er fineness of β2	20 = 75		
Standard	l pressure s	ensor	 0 to 400 bar (0 to 5,802 psi), 4 to 20 mA 0 to 25 bar (0 to 363 psi), 4 to 20 mA 						
Standard	l temperatu	ire sensor	-50 to 150 °C (-	-58 to 302 °F), 4	to 20 mA				
Mounting	g option to	cylinder	Piping or hoses						
Hoses /	Length		Maximum 1.5 m						
pipes	Flow	A- and B-port	6 to 8 m/s (recommended						
	rate	T- and L-port	2 to 4 m/s (reco	ommended)					
Mounting	g option to t	frame	Flange mountin	ng interface					
Installati	ion position	1	Any						
Installation note			To avoid pump damage the housing pressure p_L must not exceed the pressure in the low-pressure line (p_A or p_B) by more than 1 bar.						
		Design the drain line with the lowest possible pressure losses.							
			Maximal pump speed is preload pressure dependent on suction line for self-contained system.						
			Preload pressure on the boost HPU should be monitored for half-open system.						
			by more than +2	erature in the tar 25 °C (+77 °F). If approximately 1	this should occu	r, the pump shall	be jog started		

GENERAL TECHNICAL DATA

Additional Functions Half-open (Standard Orifice Configuration)

Size	019	032	080	140	250
Flushing flow ¹⁾	2 l/min	3 l/min	4.1 l/min	6.3 l/min	10.4 l/min
HPU minimum flow at 50 °C fluid temperature ¹⁾	6 l/min	8 l/min	14.5 l/min	29 l/min	45 l/min

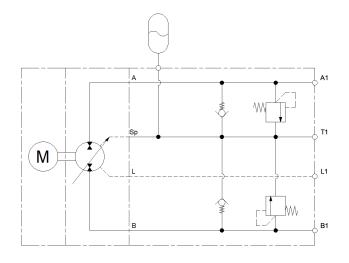
¹⁾ Values referred to a pre-pressure of 10 bar

Functional Safety

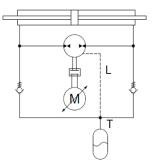
Functional safety Performance Level c is realized for safe stop function with a 2-way seat valve, which closed the selected cylinder chamber. With this additional function, the stop function for Performance Level c is possible as well as pressure close in cylinder chamber.

If pressure close in cylinder chamber should be monitored, please choose the additional pressure sensor for pressure close.

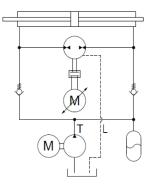
Sensor Configuration

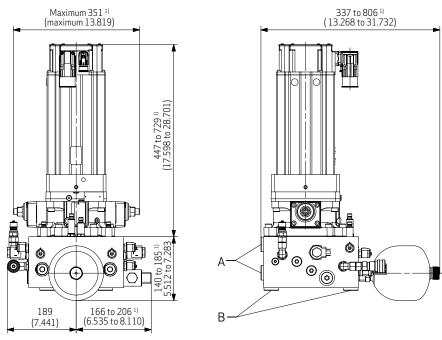

If additional pressure close sensor is desired, please select the functional safety valve in the same port as well.

Attachments

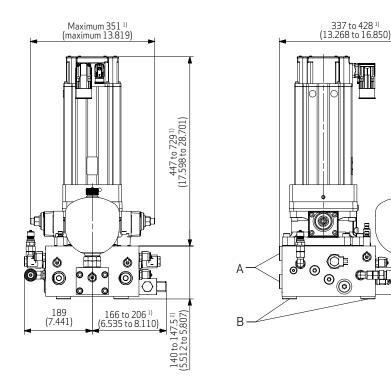

Size	019	032	08	0	140	250
Bypass between cylinder chambers	E.g. for short-circuiting of the cylinder chambers, to unload the system while external forces are active. Pressure equalizes.					
Additional pressure relief of cylinder chambers	Not necessary, function always integrated in basis manifold, cause of logic circuit		Needed for high hanging masses on		(Performance	
Bypass between pressure side and accumulator side	Not available			cylinder"		

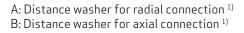
PRE-PRESSURE TYPES


Basic Circuit and Hydraulic Outlets



Self-contained System

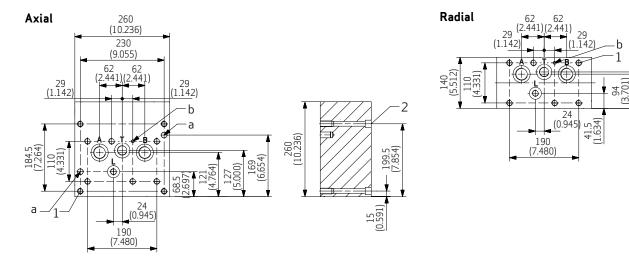

Half-open System



Orthogonal Orientation of Accumulator

Parallel Orientation of Accumulator

D

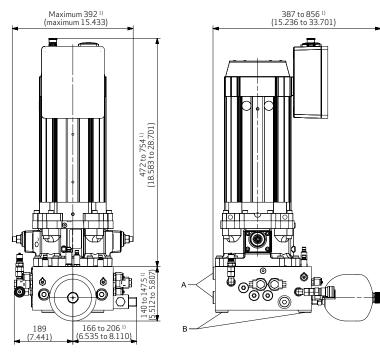

¹⁾ Project dependent

3.937

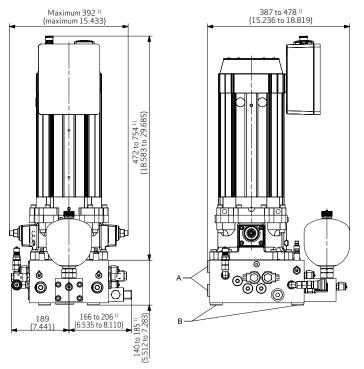
DIMENSIONS SIZE 19

Mounting Pattern

Mounting pattern

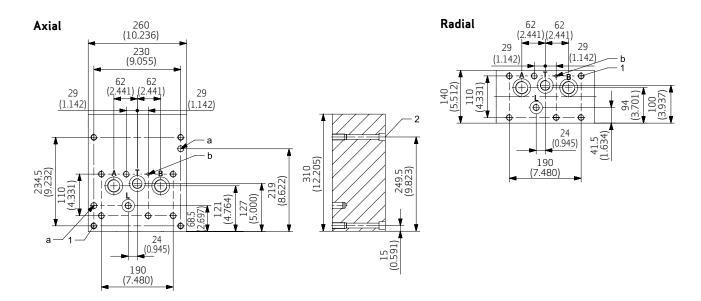


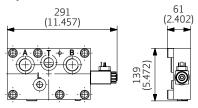
Attachment Bypass between Cylinder Chambers (Interface similar to Basic Manifold)


291 (11.457)	61 (2.402)
	(139) (472)
. <u></u>	

A, B	G1
Т	G3/4
L	G3/8
1	M16, 24 deep Recommended: Use 6 screws M16 with Nord-Lock Steel Washer (property class 10.9); tightening torque 310 Nm
2	M12 Recommended: Use 4 cylinder head screws M12 with Nord-Lock Steel Washer (property class 10.9, minimum length 150 mm) according to ISO 4762; tightening torque 125 Nm
а	Cylindrical pin with nominal diameter of 16m6x60 St according to ISO 2338
Ь	Cylindrical pin with nominal diameter of 8m6x32 St according to ISO 2338

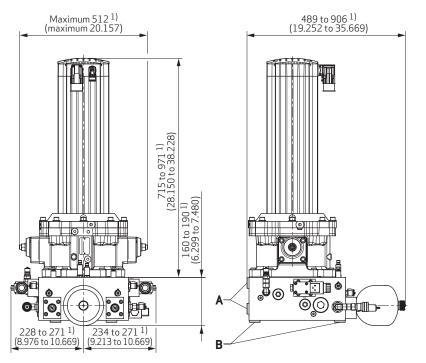
Orthogonal Orientation of Accumulator

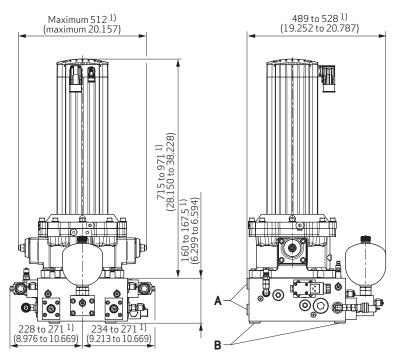

Parallel Orientation of Accumulator


A: Distance washer for radial connection $^{\rm 1)}$ B: Distance washer for axial connection $^{\rm 1)}$

¹⁾ Project dependent

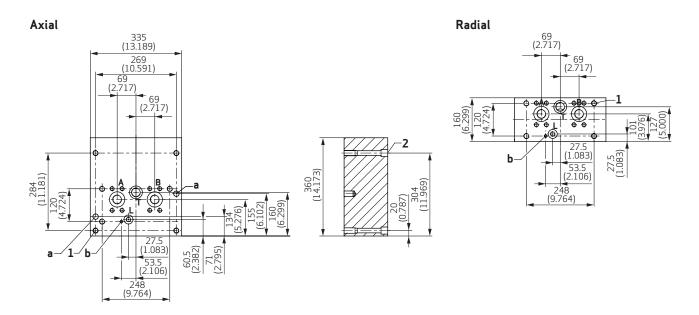
Mounting Pattern


Attachment Bypass between Cylinder Chambers

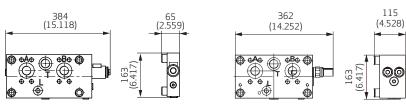

Interface similar to basic manifold

A, B	G1
Т	G3/4
L	G3/8
1	M16, 24 deep Recommended: Use 6 screws M16 with Nord-Lock Steel Washer (property class 10.9); tightening torque 310 Nm
2	M12 Recommended: Use 4 cylinder head screws M12 with Nord-Lock Steel Washer (property class 10.9, minimum length 150 mm) according to ISO 4762; tightening torque 125 Nm
а	Cylindrical pin with nominal diameter of 16m6x60 St according to ISO 2338
b	Cylindrical pin with nominal diameter of 8m6x32 St according to ISO 2338

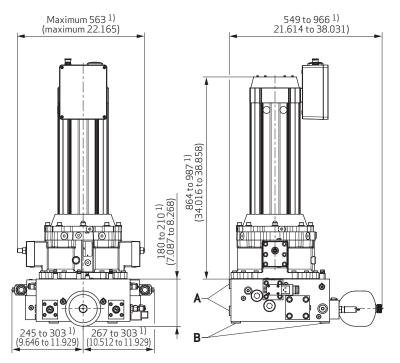
Orthogonal Orientation of Accumulator


Parallel Orientation of Accumulator

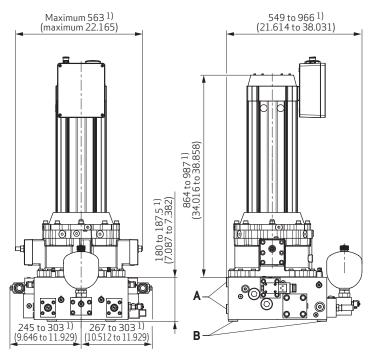
A: Distance washer for radial connection ¹⁾ B: Distance washer for axial connection ¹⁾


¹⁾ Project dependent

Mounting Pattern

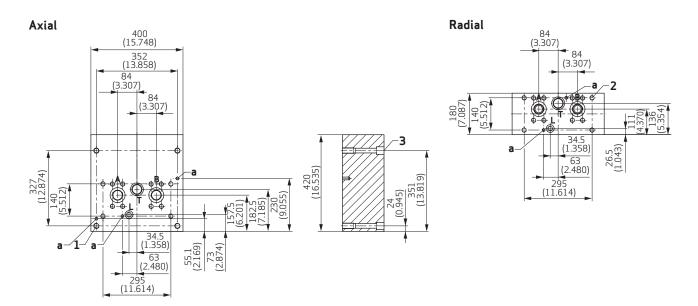

Attachment Bypass between Cylinder Chambers (Interface similar to Basic Manifold)

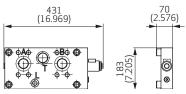
Attachment Pressure Relief (Interface similar to Basic Manifold)



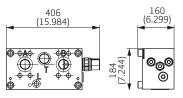
G1 and SAE 1-1/2"-6,000 psi
G1
G3/8
M20, 30 deep Recommended: Use 4 screws M20 with Nord-Lock Steel Washer (property class 10.9); tightening torque 610 Nm
M16 Recommended: Use 4 cylinder head screws M16 with Nord-Lock Steel Washer (property class 10.9, minimum length 170 mm) according to ISO 4762; tightening torque 310 Nm
Cylindrical pin with nominal diameter of 20m6x70 St according to ISO 2338
Cylindrical pin with nominal diameter of 10m6x50 St according to ISO 2338

Orthogonal Orientation of Accumulator

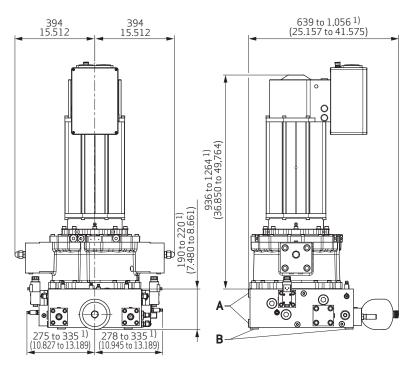

Parallel Orientation of Accumulator


A: Distance washer for radial connection $^{1)}\ B$: Distance washer for axial connection $^{1)}\$

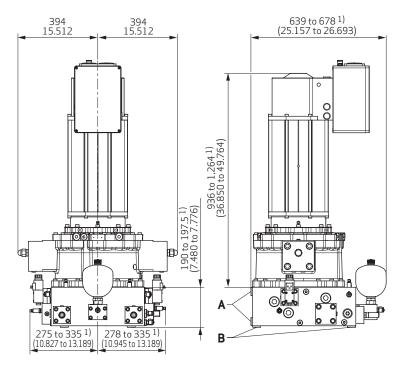
¹⁾ Project dependent


Mounting Pattern

Attachment Bypass between Cylinder Chambers (Interface similar to Basic Manifold)



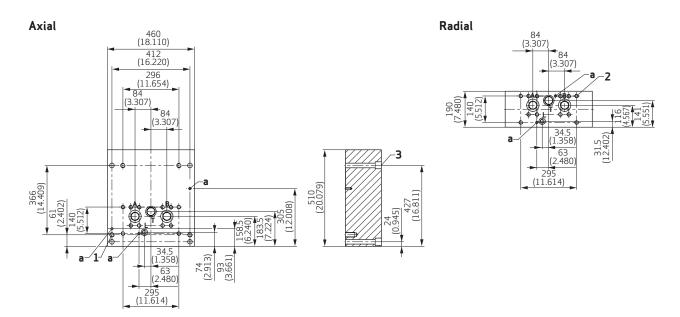
Attachment Pressure Relief (Interface similar to Basic Manifold)



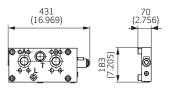
A, B	M42x2 and SAE 2"-6,000 psi
Т	M42x2
L	G1/2
1	M24, 48 deep Recommended: Use 6 screws M24 with Nord-Lock Steel Washer (property class 10.9); tightening torque 1,050 Nm
2	M20, 33 deep Recommended: Use 4 cylinder head screws M20 with Nord-Lock Steel Washer (property class 10.9); tightening torque 610 Nm
3	M20 Recommended: Use 4 cylinder head screws M20 with Nord-Lock Steel Washer (property class 10.9, minimum length 190 mm) according to ISO 4762; tightening torque 610 Nm
а	Cylindrical pin with nominal diameter of 12m6x60 St according to ISO 2338
b	Cylindrical pin with nominal diameter of 8m6x32 St according to ISO 2338

Orthogonal Orientation of Accumulator

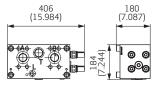
Parallel Orientation of Accumulator



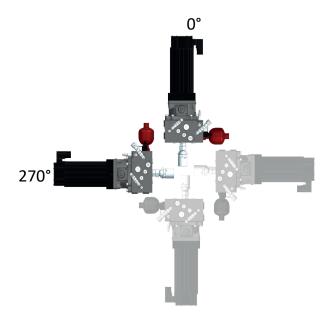
A: Distance washer for radial connection $^{1)}\ B$: Distance washer for axial connection $^{1)}\$

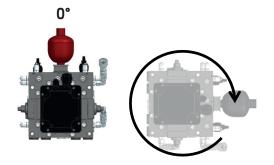

¹⁾ Project dependent

All dimensions in mm, all dimensions for orientation


Mounting Pattern

Attachment Bypass between Cylinder Chambers (Interface similar to Basic Manifold)


Attachment Pressure Relief (Interface similar to Basic Manifold)


A, B	M42x2 and SAE 2"-6,000 psi
Т	M42x2
L	G1/2
1	M24, 48 deep Recommended: Use 4 screws M24 with Nord-Lock Steel Washer (property class 10.9); tightening torque 1,050 Nm
2	M20, 33 deep Recommended: Use 4 screws M20 with Nord-Lock Steel Washer (property class 10.9); tightening torque 610 Nm
3	M24 Recommended: Use 4 cylinder head screws M24 with Nord-Lock Steel Washer (property class 10.9, minimum length 210 mm) according to ISO 4762; tightening torque 1,050 Nm
Ь	Cylindrical pin with nominal diameter of 12m6x60 St according to ISO 2338

INSTALLATION

Preferred Mounting Position for Bleeding 0° and 270° (Clockwise)

Preferred Mounting Position Lying for Bleeding 0°

ACCESSORIES

Cooling and Filling Connection

Part name	Type code	Part number								
		019	032	080	140	250				
Hydraulic coupling (male)	H3-63-BSPP	HMS00006	555	-	-					
Hydraulic coupling (female)	H3-62-BSPP	HMS00006	554		-	-				

ABOUT MOOG

Hydraulic Solutions

Since Bill Moog invented the first commercially viable servo valve in 1951, Moog has set the standard for worldclass hydraulic technology. Today, Moog products are used in a variety of applications - providing high power, enhanced productivity and ever better performance for some of the world's most demanding applications.

Electric Solutions

Clean operation, low noise generation, less maintenance and reduced power consumption make Moog electric solutions ideal for applications worldwide. Moog is the ideal partner for applications where transitioning technologies requires special expertise.

Hybrid Solutions

By incorporating the advantages of existing hydraulic and electric technologies - including modular flexibility, increased efficiency and cleanliness - into innovative hybrid solutions, Moog offers new performance potential in specialized applications.

Simulation Table

Flight Simulation

ORDERING CODE

	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17 1	8		
	R								\square	Ν	NN						7		
								ïH	F	닏						╧┝			
1	Product															F	18 Mechanical		
WS	Electrohydrostatic															L	Interface Direct	ion	
	Pump System																A Axial		
	.																R Radial		
2	Design															17	Hydraulic Interfac	e	
R	Servomotor + Radial Piston Pump + Manifold															1,	Direction		
																Α	Axial		
3	Nominal Displacement															R	Radial		
019	19 cm ³														10				
032	32 cm ³														16 N		cumulator Size ithout	_	
080	80 cm ³														B	0.		_	
	140 cm ³														D	1.4			
250	250 cm ³														F	2.0		_	
	D														G	3.			
4	Pump Adjustment														K	6			
	Fixed displacement													1.5					
	Dual displacement - initia													15			ulator Orientation		
NH	Dual displacement - initi	al V _m	ax											N			t accumulator		
														R		thog ralle			
5 SO	Motor Performance Cla													F	i a	lalle	l		
	Small performance clas Medium performance c												14		nfiguration				
HO	High performance class																4 to 20 mA)		
110		55										2 Standard + a				additional pressure	i l		
6	Motor Cooling												3				or in A additional pressure		
С	Convection												5				or in B	;	
F	Fan												4				additional pressure	2	
W	Liquid																or in A and B		
												1~			ienc	6-6	otu 1)		
7	Pressure Class (Pressure Relief Setting)												Functional Safety ¹⁾ Without						
25	250 bar															rel	evel c - valve in A		
	315 bar (standard)																evel c - valve in B		
34	340 bar												_				evel c - valve in A an	d B	
8	Pre-pressure Type									_] 	
S	Self-contained (standa	rd)								11							ure Side and		
Н	Half open (standard ori		confi	igurat	ion)			1		N		itha		ator	Side				
				0	,			<u>.</u>			VV		Jut						
9	Bypass between Cylind	ler C	haml	bers					10) A	ddit	iona	al P	ress	ure R	elief	of Cylinder Chamb	ers	
Ν	Without (standard)								1	V	Vitho	ut (sta	ndar	d)				
Α	Pressure equalization A								2						erfor	mano	ce Level c (only for		
В	Pressure equalization A	∖to E	3 (no	rmally	/ close	ed)				S	izes	80 t	to 2	50)					

¹⁾ According to EN ISO 13849-1 for function "safe stop".

When ordering, always specify the ordering code of the Electrohydrostatic Pump Unit (EPU) (see respective catalog) as a comment.

MORE PRODUCTS. MORE SUPPORT.

Moog designs a range of motion control products to complement those featured in this document. Moog also provides service and support for all of our products. For more information, contact the Moog facility closest to you.

Australia +61 3 9561 6044 Service + 61 3 8545 2140 info.australia@moog.com service.australia@moog.com

Brazil +55 11 3572 0400 info.brazil@moog.com service.brazil@moog.com

Canada +1 716 652 2000 info.canada@moog.com

China +86 512 5350 3600 info.china@moog.com service.china@moog.com

France +33145607000 Service +33145607015 info.france@moog.com service.france@moog.com

Germany +49 7031 622 0 Service +49 7031 622 197 info.germany@moog.com service.germany@moog.com

Hong Kong +852 2 635 3200 info.hongkong@moog.com India +91 80 4057 6666 Service +91 80 4057 6604 info.india@moog.com service.india@moog.com

Ireland +353 21 451 9000 info.ireland@moog.com

Italy +39 0332 421 111 Service 800 815 692 info.italy@moog.com service.italy@moog.com

Japan +81 46 355 3767 info.japan@moog.com service.japan@moog.com

Korea +82 31 764 6711 info.korea@moog.com service.korea@moog.com

Luxembourg +352 40 46 401 info.luxembourg@moog.com

The Netherlands +31 252 462 000 info.thenetherlands@moog.com service.netherlands@moog.com Singapore +65 677 36238 Service +65 651 37889 info.singapore@moog.com service.singapore@moog.com

Spain +34 902 133 240 info.spain@moog.com

Sweden +46 31 680 060 info.sweden@moog.com

Turkey +90 216 663 6020 info.turkey@moog.com

United Kingdom +44 (0) 1684 858000 Service +44 (0) 1684 278369 info.uk@moog.com service.uk@moog.com

USA +17166522000 info.usa@moog.com service.usa@moog.com

For product information, visit www.moog.com/industrial

Moog is a registered trademark of Moog Inc. and its subsidiaries. All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries. ©2023 Moog Inc. All rights reserved. All changes are reserved.

Moog Electrohydrostatic Pump System (EPS) KEM/Rev. A, November 2023, Id. CDL 67242 -en

