

Betriebsanleitung

Baureihe D636/D638

Direktbetätigte Regelventile mit integrierter digitaler Elektronik und CAN-Bus-Schnittstelle

© 2005 Moog GmbH

Hanns-Klemm-Straße 28, 71034 Böblingen (Germany) Telefon: +49 7031 622-0, Telefax: +49 7031 622-191

E-Mail: info@moog.de, Internet: http://www.moog.com/industrial

Alle Rechte vorbehalten. Kein Teil dieser Betriebsanleitung darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne unsere schriftliche Genehmigung reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Haftungsausschluss

Diese Betriebsanleitung wurde mit großer Sorgfalt erstellt, der gesamte Inhalt nach bestem Wissen erarbeitet. Trotzdem sind Irrtümer nicht auszuschließen und Verbesserungen möglich. Wir würden uns freuen, wenn Sie uns auf eventuell vorhandene Fehler oder unvollständige Angaben aufmerksam machen würden.

Wir übernehmen jedoch keinerlei Haftung für die Übereinstimmung des Inhalts mit den jeweiligen geltenden gesetzlichen Vorschriften, ebenso wenig für eventuell verbliebene fehlerhafte oder unvollständige Angaben und deren Folgen.

Änderungen sind jederzeit ohne Angabe von Gründen möglich.

Teilenummer der Betriebsanleitung D636/D638

Diese Betriebsanleitung kann bei der o. g. Adresse unter folgender Teilenummer bestellt werden: B95872-002

Warenzeichen

Hinweis:

Alle in dieser Betriebsanleitung genannten Bezeichnungen von Erzeugnissen sind Marken der jeweiligen Firmen. Aus dem Fehlen der Markenzeichen ® bzw. ™ kann nicht geschlossen werden, dass die Bezeichnung ein freier Markenname ist.

Inhaltsverzeichnis

1	Allg	emeines		1			
	1.1	Verwendung	der Betriebsanleitung	1			
	1.2	Bestimmung	sgemäße Verwendung	1			
	1.3	Personalaus	wahl und -qualifikation	1			
	1.4	Elektromagn	netische Verträglichkeit (EMV)	2			
	1.5		ung und Haftung				
	1.6	•	rung				
	1.7	Abkürzungei	n	3			
2	Sich	erheitshinwe	eise	5			
3	Funi	ktion und Arl	beitsweise der Ventile	7			
	3.1	Allgemein		7			
			ripdarstellung des direktbetätigten Regelventils				
	0.0		nanentmagnet-Linearmotor				
	3.2		n des Regelventils menstromfunktion (Q-Funktion)				
		3.2.2 Druck	kfunktion (p-Funktion)	9			
		3.2.3 Volur	menstrom- und Druckfunktion (pQ-Funktion) (optional bei D638)	10			
			eise zum Regelverhalten				
	3.3		d CANopen				
	3.4	_	lwerteingänge				
			menstrom-Sollwerteingang ±10 V potenzialfreimenstrom-Sollwerteingang ±10 mA potenzialfrei				
			menstrom-Sollwerteingang ±10 mA massebezogen				
		3.4.4 Volur	menstrom-Sollwerteingang 4–20 mA potenzialfrei	13			
			menstrom-Sollwerteingang 4–20 mA massebezogen				
			k-Sollwerteingang 0–10 V potenzialfrei (D638)k-Sollwerteingang 0–10 mA potenzialfrei (D638)				
			k-Sollwerteingang 0–10 mA massebezogen (D638)				
		3.4.9 Druck	k-Sollwerteingang 4–20 mA potenzialfrei (D638)	16			
		3.4.10 Druc	k-Sollwerteingang 4–20 mA massebezogen (D638)	16			
	3.5	Analoge Istw	vertausgänge	17			
			menstrom-Istwertausgang 4–20 mA				
			k-Istwertausgang 4–20 mA (D638)vertung der Istwertausgänge 4–20 mA				
	3.6		/Ausgänge				
	0.0		pabe-Eingang (Option)				
			ale Ausgänge				
	3.7	7 Statusanzeige					
		3.7.1 Modu	ul-Status-LED «MS»	18			
		3.7.2 Netzy	werk-Status-LED «NS»	19			

4	Tec	hnische Daten und Lieferumfang	21
	4.1	Allgemeine technische Daten	21
	4.2	Hydraulische Daten	22
		4.2.1 Wege-Funktionen der Regelventile	
		4.2.2 Leckölanschluss Y	
	4.3	Elektrische Daten	24
	4.4	Kennlinien	25
		4.4.1 Sprungantwort, Frequenzgang und Volumenstromdiagramm	
		4.4.2 Volumenstrom-Signal-Kennlinie	
	4.5	Abmessungen (Einbauzeichnung)	
	4.6	Lochbild und Montagefläche	
		· ·	
	4.7	Lieferumfang	28
5	Trar	nsport und Lagerung	29
		Verpackung/Transport	
	5.2	Lagerung	
	0.2	_ags-ang	
6	Mor	ntage/Demontage und Anschluss an die Systemhydraulik	31
	6.1	Montage des Regelventils	32
	6.2	Demontage des Regelventils	33
7	Elek	ktrischer Anschluss	35
	7.1	Steckerbelegung	36
		7.1.1 Anbaustecker	
		7.1.2 CAN-Anbaustecker	37
	7.2	Verdrahtung von CAN-Netzwerken	
		7.2.1 Leitungslängen und Leitungsquerschnitte in CAN-Netzwerken	
		7.2.2 Geeignete Leitungstypen	
8	Inbe	etriebnahme des Regelventils	41
	8.1	Hydraulikanlage befüllen und spülen	42
	8.2	Hydraulikanlage entlüften (D638) und in Betrieb setzen	43
	8.3	Anschluss an den CAN-Bus	43

9	Wartung und Reparatur	45
10) Störungsbeseitigung	47
11	Werkzeuge, Ersatzteile und Zubehör	49
	11.1 Werkzeuge für 6+PE-polige Steckverbinder	49
	11.2 Ersatzteile und Zubehör D636/D638	49
12	2 Anhang	
	12.1 Weiterführende Literatur	
	12.1.1 Hydraulik	51
	12.1.2 Hydraulik in der Feldbusumgebung	51
	12.1.3 CAN-Grundlagen	51
	12.2 Adressen	53
13	Stichwortverzeichnis	55

		rze		

Für Ihre Notizen.

1 Allgemeines

1.1 Verwendung der Betriebsanleitung

Diese Betriebsanleitung bezieht sich ausschließlich auf direktbetätigte Regelventile der Baureihen D636 (Ventile mit Volumenstromfunktion) und D638 (Ventile mit Druckfunktion) mit integrierter digitaler Elektronik und CAN-Bus-Schnittstelle. Sie enthält die wichtigsten Hinweise, um Regelventile sicherheitsgerecht zu betreiben.

Die Betriebsanleitung muss stets griffbereit und jederzeit zugänglich in der Nähe des Regelventils bzw. der übergeordneten Maschinenanlage aufbewahrt werden.

Der Inhalt dieser Betriebsanleitung muss von jedem für Maschinenplanung, Montage und Betrieb Verantwortlichen gelesen, verstanden und in allen Punkten befolgt werden. Dies gilt besonders für die Sicherheitshinweise.

Das Befolgen der Sicherheitshinweise hilft Unfälle, Störungen und Fehler zu vermeiden.

Grundvoraussetzung für den sicherheitsgerechten Umgang und den störungsfreien Betrieb des Regelventils sind Kenntnisse der Sicherheitshinweise und der national und international geltenden Sicherheitsvorschriften.

Verwendung der Betriebsanleitung

1.2 Bestimmungsgemäße Verwendung

Direktbetätigte Regelventile der Baureihen D636 und D638 werden immer als Bestandteil eines übergeordneten Gesamtsystems betrieben, z. B. in einer Maschinenanlage.

Sie dürfen ausschließlich als Stellglieder in hydraulischen Lage-, Geschwindigkeits-, Druck- und Kraftregelkreisen zur Volumen- und/oder Druckregelung eingesetzt werden. Die Ventile sind für den Einsatz mit Hydraulikölen auf Mineralölbasis vorgesehen. Der Einsatz mit anderen Medien bedarf der unserer Zustimmung.

Eine andere oder darüber hinausgehende Verwendung ist nicht zulässig.

Der Betrieb ist nur in Industriebereichen entsprechend der Norm DIN EN 50081-2 zulässig.

Der Betrieb in explosionsgefährdeter Umgebung ist nicht zulässig.

Zur bestimmungsgemäßen Verwendung gehören auch das Beachten der Betriebsanleitung und die Einhaltung der Inspektions- und Wartungsvorschriften.

Bestimmungsgemäße Verwendung

1.3 Personalauswahl und -qualifikation

Arbeiten mit und an Regelventilen dürfen nur von hierfür geschultem und unterwiesenem Personal mit den hierfür erforderlichen Kenntnissen und Erfahrungen durchgeführt werden.

Personalauswahl und -qualifikation

Gewährleistung

und Haftung

1.4 Elektromagnetische Verträglichkeit (EMV)

Die Regelventile der Baureihen D636 und D638 entsprechen folgenden Normen:

Elektromagnetische Verträglichkeit (EMV)

DIN EN 50081-2 Elektromagnetische Verträglichkeit (EMV); Fach-

grundnorm Störaussendung; Teil 2: Industriebereich

DIN EN 61000-6-2 Elektromagnetische Verträglichkeit (EMV); Teil 6-2: Fachgrundnormen: Störfestigkeit; Industriebereich

DIN EN 55011 Industrielle, wissenschaftliche und medizinische

Hochfrequenzgeräte (ISM-Geräte) - Funkstörungen -

Grenzwerte und Messverfahren

Der Einsatz der Regelventile der Baureihen D636 und D638 in Wohn-, Geschäfts- und Gewerbebereichen sowie Kleinbetrieben entsprechend den Normen DIN EN 50081-1 und DIN EN 50082-1 ist nicht zulässig.

1.5 Gewährleistung und Haftung

Grundsätzlich gelten unsere "Liefer- und Zahlungsbedingungen". Diese stehen dem Betreiber spätestens seit Vertragsabschluss zur Verfügung.

Unter anderem sind Gewährleistungs- und Haftungsansprüche bei Personen- und Sachschäden ausgeschlossen, wenn sie auf eine oder mehrere der folgenden Ursachen zurückzuführen sind:

- Nicht bestimmungsgemäße Verwendung des Regelventils
- Unsachgemäßes Montieren, Inbetriebnehmen und Warten des Regelventils
- Unsachgemäße Handhabung des Regelventils, wie z. B. der Einsatz in explosionsgefährdeter, zu heißer oder zu kalter Umgebung
- Nichtbeachten der Hinweise in der Betriebsanleitung bezüglich Transport, Lagerung, Montage, Inbetriebnahme und Wartung des Regelventils
- · Eigenmächtige bauliche Veränderungen am Regelventil
- Unsachgemäß durchgeführte Reparaturen
- Katastrophenfälle durch Fremdkörpereinwirkung oder höhere Gewalt

1.6 Symbolerklärung

In dieser Betriebsanleitung werden folgende Symbole verwendet:

Verwendete Symbole

Wichtige Information

ĵ

Gefahr der Beschädigung von Maschine oder Material

ė

Gefahr für Leib und Leben allgemein

Gefahr für Leib und Leben spezifisch

Gebotszeichen

1 Allgemeines Abkürzungen

1.7 Abkürzungen

In dieser Betriebsanleitung werden folgende Abkürzungen verwendet:

Verwendete Abkürzungen

β_X Formelzeichen für Filterfeinheitv Formelzeichen für Viskosität

μP Mikroprozessor

CAN Controller Area Network

CiA CAN in Automation Nutzervereinigung

DDV Direct Drive Valve (Direktbetätigtes Regelventil)

DIN Deutsches Institut für Normung e. V.

DS Draft **S**tandard (werden vom CiA herausgegeben)

DSP Draft Standard Proposal (werden vom CiA herausgegeben)

DSP Digitaler Signal prozessor

EMV Elektromagnetische Verträglichkeit

EN Europa-Norm

FPM Fluor-Karbon-Kautschuk
GND Ground (Signalmasse)

HNBR Hydrierter Nitril-Butadien-Acryl-Kautschuk

ID Identifier

Inner Diameter (Innendurchmesser, z. B. bei O-Ringen)

ISO International Organization for Standardization

LED Light Emitting Diode (Leuchtdiode)

LSS Layer Setting Services

LVDT Linear Variable Differential Transformer (Sensor zur Erfassung der

Position des Steuerkolbens im Ventil (Wegaufnehmer))

MS Modul-Status-LED «MS»NAS National American StandardNS Netzwerk-Status-LED «NS»

p Formelzeichen für Druck (**P**ressure)

PC Personal Computer

PE Protective Earth (Schutzerde)

PWM Pulsweitenmodulation

Q Formelzeichen für Volumenstrom

SW Schlüsselweite bei Schraubenschlüsseln

VDMA Verband **D**eutscher **M**aschinen- und **A**nlagenbau e. V.

1 Allgemeines Abkürzungen

Für Ihre Notizen.

2 Sicherheitshinweise

Die Inbetriebnahme, der Einsatz und die Verwendung der Regelventile der Baureihen D636 und D638 darf nur wie in dieser Betriebsanleitung beschrieben erfolgen.

Sicherheitshinweise

Sie dürfen nur als Bestandteil eines übergeordneten Gesamtsystems, z.B. einer Maschinenanlage, und nur in Industriebereichen entsprechend der Norm DIN EN 50081-2 betrieben werden.

Der Einsatz der Regelventile der Baureihen D636 und D638 in Wohn-, Geschäfts- und Gewerbebereichen sowie Kleinbetrieben entsprechend den Normen DIN EN 50081-1 und DIN EN 50082-1 ist nicht zulässig.

Der Betrieb in explosionsgefährdeter Umgebung ist nicht zulässig.

Bei Maschinenplanung und Verwendung von Regelventilen sind die einsatzspezifischen Sicherheits- und Unfallverhütungsvorschriften einzuhalten, wie z. B.:

DIN EN ISO 12100 Sicherheit von Maschinen - Grundbegriffe,

allgemeine Gestaltungsleitsätze

DIN EN 982 Sicherheit von Maschinen - Sicherheitstechni-

sche Anforderungen an fluidtechnische Anla-

gen und deren Bauteile - Hydraulik

DIN EN 60204 Sicherheit von Maschinen - Elektrische Aus-

rüstung von Maschinen

Der Hersteller und der Betreiber des übergeordneten Gesamtsystems, z. B. einer Maschinenanlage, ist für die Einhaltung der für den speziellen Einsatzfall geltenden nationalen und internationalen Sicherheits- und Unfallverhütungsvorschriften verantwortlich.

Umbauten und Veränderungen sowie Eingriffe in das Innere des Regelventils können zu schwersten Verletzungen führen und sind verboten.

Arbeiten mit und an Regelventilen dürfen nur von hierfür geschultem und unterwiesenem Personal mit den hierfür erforderlichen Kenntnissen und Erfahrungen durchgeführt werden.

Montage, Demontage, elektrischer und hydraulischer Anschluss und Wartung von Regelventilen sowie Störungsbeseitigung bei Regelventilen darf nur durch hierfür ausgebildetes, geschultes und autorisiertes Fachpersonal nach geltenden Vorschriften in spannungsfreiem und drucklosem Zustand und bei ausgeschalteter Maschine erfolgen.

Die Maschine muss hierbei gegen Wiedereinschalten gesichert sein. Geeignete Maßnahmen hierzu sind z. B.:

- Hauptbefehlseinrichtung verschließen und Schlüssel abziehen und/oder
- Warnschild am Hauptschalter anbringen

Der Betrieb von Maschinenanlagen mit undichten Regelventilen oder einem undichten Hydrauliksystem ist gefährlich und unzulässig.

Bei der Erstinbetriebnahme des Regelventils am Feldbus empfehlen wir den Betrieb des Ventils in drucklosem Zustand!

Sicherheitshinweise

Die Ansteuerung des Regelventils über die Konfigurationssoftware ist nur zulässig, wenn dadurch keine gefahrbringenden Zustände in der Maschinenanlage und in deren Umfeld hervorgerufen werden könnten.

Der Betrieb der Konfigurationssoftware an einem CAN-Bus mit laufender CAN-Kommunikation ist nicht zulässig.

Kann ein gefahrloser Betrieb des Ventils über die Konfigurationssoftware auch mit abgeschalteter CAN-Kommunikation nicht sichergestellt werden, darf das Ventil nur drucklos und in einer direkten Verbindung (Punkt-zu-Punkt) mit der Konfigurationssoftware kommunizieren.

(Zum Herstellen einer direkten Verbindung zwischen Konfigurationssoftware und Ventil ist die CAN-Bus-Leitung vom Ventil abzuziehen und das Ventil direkt mit der CAN-Bus-Schnittstellenkarte des PCs zu verbinden.)

Unter Druck herausspritzendes Hydrauliköl kann zu schweren Verletzungen, Verbrennungen und Bränden führen.

Vor der Montage/Demontage sind alle Druckleitungen und Speicher im Hydraulikkreis drucklos zu machen.

Regelventile und Hydraulikanschlussleitungen können während des Betriebs sehr heiß werden.

Bei der Montage, Demontage oder Wartung der Regelventile ist geeignete Arbeitsschutzausrüstung, wie z. B. Arbeitshandschuhe, zu tragen.

Beim Umgang mit Hydraulikflüssigkeiten sind die für das jeweilige Produkt geltenden Sicherheitsbestimmungen zu beachten.

Die Hinweise dieser Betriebsanleitung, besonders das Kapitel 2 (ab Seite 5) und das Kapitel 9 (ab Seite 45) sind in die Betriebsanleitung des übergeordneten Gesamtsystems einzufügen.

- Die Einhaltung der zulässigen Umgebungsbedingungen (siehe Kapitel 4, Seite 21) muss sichergestellt werden.
- Die Regelventile dürfen nicht ohne montierte Staubschutzplatte transportiert oder gelagert werden!
- Um Überhitzung des Regelventils zu vermeiden, ist das Ventil so zu montieren, dass gute Belüftung sichergestellt ist.

 Die Ventile dürfen nicht direkt auf Maschinenteile montiert werden, die starken Vibrationen oder Stößen ausgesetzt sind.

 Auf ruckartig bewegten Einheiten sollte die Kolbenrichtung nicht der Bewegungsrichtung entsprechen.
- Die Ventile dürfen nicht in Flüssigkeiten getaucht werden.

3 Funktion und Arbeitsweise der Ventile

3.1 Allgemein

Die Ventile der Baureihen D636 (Ventile mit Volumenstromfunktion) und D638 (Ventile mit Druckfunktion) sind direktbetätigte Regelventile (DDV - \underline{D} irect \underline{D} rive \underline{V} alve). Die Ventile sind Drosselventile für 3- (2-, 4-, 2x2-) Wege-Anwendungen und eignen sich für elektrohydraulische Lage-, Geschwindigkeits-, Druck- und Kraftregelungen auch bei hohen dynamischen Anforderungen.

Als Antrieb des Steuerkolbens wird ein Permanentmagnet-Linearmotor eingesetzt. Der Linearmotor verstellt im Gegensatz zu Proportionalmagnetantrieben den Steuerkolben aus der federzentrierten Mittelposition in beide Arbeitsrichtungen. Dadurch erhält das Regelventil eine hohe Stellkraft für den Steuerkolben bei gleichzeitig guten statischen und dynamischen Eigenschaften.

Folgende Betriebsarten sind möglich:

- Volumenstromfunktion (Q-Funktion) (D636) (siehe Kapitel 3.2.1, Seite 9)
- Druckfunktion (p-Funktion) (D638) (siehe Kapitel 3.2.2, Seite 9)
- Volumenstrom und Druckfunktion (pQ-Funktion) (optional bei D638) (siehe Kapitel 3.2.3, Seite 10)

Die digitale Treiber- und Regel-Elektronik ist im Ventil integriert. Bestandteil der Ventilelektronik ist ein Mikroprozessorsystem, das über die enthaltene Ventilsoftware alle wesentlichen Funktionen ausführt. Die digitale Elektronik ermöglicht, dass die Regelung des Ventils über den gesamten Arbeitsbereich nahezu temperaturunabhängig und driftfrei erfolgt.

Die Parametrierung, Ansteuerung und Überwachung der Ventile erfolgt über die integrierte CAN-Bus-Schnittstelle entsprechend CiA-Standard DSP 408 (Device Profile Fluid Power Technology).

Zusätzlich stehen als Option bis zu zwei analoge Sollwerteingänge und bis zu zwei analoge Istwertausgänge mit programmierbarer Funktion zur Verfügung.

Vorteile der direktbetätigten Regelventile der Baureihe D636/D638:

- Direktantrieb mit Permanentmagnet-Linearmotor mit hoher Stellkraft
- · Kein Steuerölbedarf
- Druckunabhängige Dynamik
- Geringe Hysterese und hohe Ansprechempfindlichkeit
- Geringer Strombedarf bei und in der Nähe von hydraulisch Null (hydraulisch Null ist die Position des Steuerkolbens, in der die Drücke bei symmetrischem Steuerkolben in den beiden verschlossenen Arbeitsanschlüssen gleich groß sind)
- · Normiertes Steuerkolbenpositionssignal
- Elektrische Nullpunkteinstellung parametrierbar
- Bei Ausfall der elektrischen Versorgung, bei Leitungsbruch oder im Fall einer NOT-AUS-Funktion wird der Steuerkolben ohne Überfahren einer Arbeitsposition in die vordefinierte, federzentrierte Position zurückgestellt (fail-safe)
- Volumenstrom- und optionale Druckfunktion (bei D638) mit nur einem Regelventil
- CAN-Bus-Schnittstelle
- · optional mit analogen Ein- und Ausgängen

Funktion der Regelventile: Drosselventile

Betriebsarten: Q-, p-, pQ-Funktion

Digitale Ventilelektronik

CAN-Bus-Schnittstelle

Vorteile der Baureihe D636/D638

3.1.1 Prinzipdarstellung des direktbetätigten Regelventils

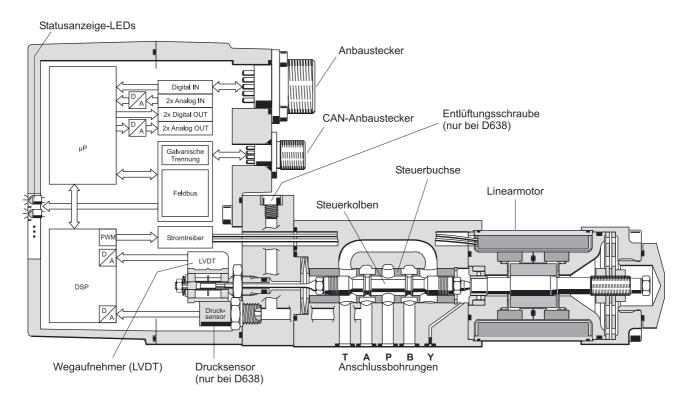


Abbildung 1: Prinzipdarstellung des Regelventils

3.1.2 Permanentmagnet-Linearmotor

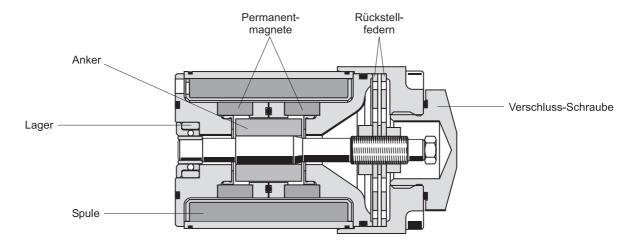


Abbildung 2: Prinzipdarstellung des Permanentmagnet-Linearmotors

Der Permanentmagnet-Linearmotor ist ein permanentmagnetisch erregter Differenzialmotor. Mit den Permanentmagneten ist ein Teil der Magnetkraft bereits eingebaut. Dadurch ist der Strombedarf des Linearmotors deutlich niedriger als bei vergleichbaren Proportionalmagneten.

Der Linearmotor treibt den Steuerkolben des Regelventils an. Die Ausgangsposition des Steuerkolbens wird im stromlosen Zustand durch die Rückstellfedern bestimmt. Der Linearmotor ermöglicht eine Auslenkung des Steuerkolbens aus der Ausgangsposition in beide Richtungen. Dabei ist die Stellkraft des Linearmotors proportional zum Spulenstrom. Die hohen Kräfte von Linearmotor und Rückstellfedern bewirken eine präzise Steuerkolbenbewegung auch gegen Strömungs- und Reibungskräfte.

Permanentmagnet-Linearmotor

3.2 Betriebsarten des Regelventils

3.2.1 Volumenstromfunktion (Q-Funktion)

In dieser Betriebsart des Regelventils wird die Position des Steuerkolbens geregelt. Der vorgegebene Sollwert entspricht einer bestimmten Steuerkolbenposition. Die Steuerkolbenposition ist proportional zum Ansteuersignal.

Das Sollwertsignal (Soll-Position des Steuerkolbens) wird der Ventilelektronik vorgegeben. Die Ist-Position des Steuerkolbens wird mit einem Wegaufnehmer (LVDT) gemessen und der Ventilelektronik zugeführt. Abweichungen zwischen der vorgegebenen Soll-Position und der gemessenen Ist-Position des Steuerkolbens werden ausgeregelt. Die Ventilelektronik steuert den Linearmotor an, der den Steuerkolben in die entsprechende Position bringt.

Der Positionssollwert kann über Parameter in der Ventilsoftware beeinflusst werden (z. B. Linearisierung, Rampen, Totband, abschnittsweise definierte Verstärkung usw.).

Q-Funktion:

Regelung der Position des Steuerkolbens

3.2.2 Druckfunktion (p-Funktion)

In dieser Betriebsart des Regelventils D638 wird der Druck in der Anschlussbohrung A geregelt. Der vorgegebene Sollwert entspricht einem bestimmten Druck in der Anschlussbohrung A.

Das Sollwertsignal (Soll-Druck in Anschlussbohrung A) wird der Ventilelektronik vorgegeben. Der Druck in der Anschlussbohrung A wird mit einem Drucksensor gemessen und der Ventilelektronik zugeführt. Abweichungen zwischen dem vorgegebenen Soll-Druck in der Anschlussbohrung A und dem gemessenen Druck werden ausgeregelt. Die Ventilelektronik steuert den Linearmotor an, der den Steuerkolben in die entsprechende Position bringt.

Die Druckregelfunktion kann über Parameter in der Ventilsoftware beeinflusst werden (z. B. Linearisierung, Rampen, Totband, abschnittsweise definierte Verstärkung usw.). Der Druckregler ist als erweiterter PID-Regler ausgeführt. Die Parameter des PID-Reglers können in der Ventilsoftware eingestellt werden.

p-Funktion:

Regelung des Drucks in der Anschlussbohrung A

3.2.3 Volumenstrom- und Druckfunktion (pQ-Funktion) (optional bei D638)

Es handelt sich um eine Kombination aus Volumenstrom- und Druckfunktion bei der beide Sollwerte (externer Volumenstromsollwert und Grenzdrucksollwert) vorhanden sein müssen. pQ-Funktion

Folgende Kombinationen sind beispielsweise möglich:

- Volumenstromfunktion mit überlagerter Druckbegrenzungsregelung
- · erzwungene Umschaltung von einer Betriebsart zur anderen

3.2.4 Hinweise zum Regelverhalten

Der sich einstellende Volumenstrom hängt nicht nur von der Steuerkolbenposition ab, sondern auch vom Druckabfall ∆p an den einzelnen Steuerkanten.

Bei 100 % Volumenstrom-Sollwert ergibt sich bei einem Nenndruckabfall Δp_N = 35 bar pro Steuerkante der Nennvolumenstrom Q_N . Verändert man den Druckabfall, so verändert sich bei konstantem Sollwert auch der Volumenstrom Q entsprechend nachstehender Formel:

Formel zur Berechnung des Volumenstroms Q

$$Q = Q_N \sqrt{\frac{\Delta p}{\Delta p_N}}$$

Q [I/min] = tatsächlicher Volumenstrom

 Q_N [I/min] = Nennvolumenstrom

Δp [bar] = tatsächlicher Druckabfall pro Steuerkante

 Δp_N [bar] = Nenndruckabfall pro Steuerkante

Die Regelstrecke wird wesentlich beeinflusst durch:

- Nennvolumenstrom Q_N
- tatsächlicher Druckabfall ∆p pro Steuerkante
- Laststeifigkeit
- das nach dem Anschluss A zu regelnde Flüssigkeitsvolumen (nur bei D638)

Bedingt durch unterschiedlichen Maschinenaufbau (wie z. B. Volumen, Verrohrung, Abzweigungen, Speicher, etc.) können in der Druckfunktion unterschiedliche Regleroptimierungen erforderlich sein. Diese Regleroptimierungen können z. B. mit der Konfigurationssoftware über die CAN-Bus-Schnittstelle vorgenommen werden.

3.3 CAN-Bus und CANopen

Das Regelventil ist mit einer CAN-Bus-Schnittstelle ausgestattet und kann innerhalb eines CAN-Netzwerks betrieben werden.

Der CAN-Bus ist ein differenzieller 2-Drahtbus und wurde zunächst für eine schnelle und störsichere Vernetzung von Komponenten in Kraftfahrzeugen entwickelt. Durch seine vielfältigen Vorteile und die hohe Zuverlässigkeit ist der CAN-Bus aber auch für Anwendungen innerhalb von Maschinenanlagen geeignet und hat sich als weit verbreiteter Standard durchgesetzt.

CANopen ist ein standardisiertes Kommunikationsprofil für die einfache Vernetzung von CANopen-fähigen Geräten verschiedenster Hersteller.

CAN-Bus-Schnittstelle

Das Kommunikationsprofil entspricht dem Standard DS 301, Version 4.0, und wird von der CiA zur Verfügung gestellt.

Für die Anbindung verschiedener Geräteklassen, wie z. B. Antriebe, Steuerungen, Winkelgeber usw. sind im CANopen-Standard verschiedene Geräteprofile definiert.

Die Funktionalität der Regelventile der Baureihen D636 und D638 entspricht dem Geräteprofil für Stetigventile gemäß dem CiA-Standard DSP 408. Dieses Geräteprofil basiert auf einem Profil einer Arbeitsgemeinschaft innerhalb des VDMA mit dem Arbeitstitel "Device Profile Fluid Power Technology".

Die Maschinensteuerung oder andere CAN-Bus-Teilnehmer können über den CAN-Bus in Echtzeit mit dem Regelventil Daten austauschen. Dies sind insbesondere Soll- und Istwerte sowie Steuer- und Statusmeldungen. Neben dieser Echtzeitübertragung können jederzeit auch Konfigurations- und Parametrierdaten zwischen der Steuerung und dem Ventil ausgetauscht werden.

Sollwerte, Gerätesteuerbefehle und Konfigurationsdaten werden von der Steuerung oder anderen CAN-Bus-Teilnehmern über den CAN-Bus zum Regelventil übertragen.

Istwerte, Statusinformationen und die aktuelle Konfiguration können von der Steuerung oder anderen CAN-Bus-Teilnehmern aus dem Regelventil ausgelesen werden.

Die integrierte Ventilelektronik kann geräte- und antriebsspezifische Funktionen, wie z.B.: Sollwertrampen oder Totband-Kompensation, übernehmen. Hierdurch kann die externe Steuerung sowie die CAN-Kommunikation entlastet werden, da diese Funktionen bisher von externen Steuerungen ausgeführt bzw. die interpolierten Zwischenwerte über den CAN-Bus übertragen werden mussten.

Überwachungs-, Fehlererkennungs- und Diagnosefunktionen erlauben das Erkennen von Geräte-Fehlfunktionen über den CAN-Bus.

3.4 Analoge Sollwerteingänge

Je nach Modell kann das Regelventil über verschiedene analoge Sollwerteingänge für die Volumenstrom- und/oder Druckfunktion verfügen. (Steckerbelegung des Anbausteckers: siehe Tabelle 6, Seite 36)

Sollwerteingang	Vorteile				
±10 V bzw. 0–10 V	einfache Messbarkeit des Signals, z.B. mit Oszilloskop				
±10 mA bzw. 0–10 mA	im Unterschied zum Sollwerteingang 4–20 mA geringerer Strombedarf bei kleinen Sollwerten; große Übertragungslängen möglich				
4–20 mA	Leitungsbruchüberwachung und große Übertragungslängen möglich				

Tabelle 1: Lieferbare analoge Sollwerteingänge

Alle Stromeingänge sind potenzialfrei oder massebezogen erhältlich. Alle Spannungseingänge sind potenzialfrei, können aber extern als massebezogene Eingänge beschaltet werden.

CANopen-Kommunikationsprofil (CiA-Standard DS 301, Version 4.0)

Geräteprofil für Stetigventile (CiA-Standard DSP 408)

Integrierte Ventilelektronik

Überwachungs-, Fehlererkennungs- und Diagnosefunktionen

Analoge Sollwerteingänge

3.4.1 Volumenstrom-Sollwerteingang ±10 V potenzialfrei

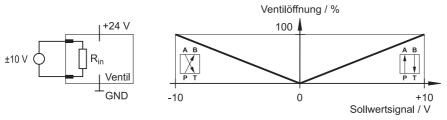


Abbildung 3: Volumenstrom-Sollwerteingang ±10 V potenzialfrei (Schaltung und Kennlinie)

Der Kolbenhub ist proportional zur Eingangsspannung Uin.

 U_{in} = +10 V 100 % Ventilöffnung P \Rightarrow A und B \Rightarrow T U_{in} = 0 V Steuerkolben in hydraulischer Nullposition U_{in} = -10 V 100 % Ventilöffnung P \Rightarrow B und A \Rightarrow T

Dieser Sollwerteingang ist ein potenzialfreier, differenzieller Eingang. (Der Potenzialunterschied jedes Eingangs zu GND muss zwischen -15 V und +32 V liegen.) Steht keine differenzielle Spannung zur Verfügung, muss je nach gewünschter Wirkrichtung ein Anschluss auf 0 V der Sollwertquelle gelegt werden.

werteingang ±10 V potenzialfrei

Volumenstrom-Soll-

3.4.2 Volumenstrom-Sollwerteingang ±10 mA potenzialfrei

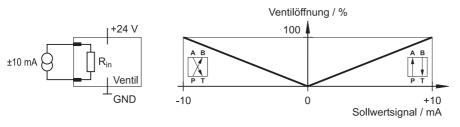
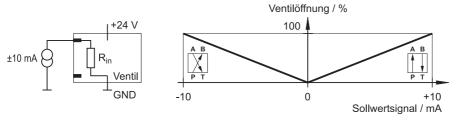


Abbildung 4: Volumenstrom-Sollwerteingang ±10 mA potenzialfrei (Schaltung und Kennlinie)


Der Kolbenhub ist proportional zum Eingangsstrom I_{in}.

 I_{in} = +10 mA 100 % Ventilöffnung P \Rightarrow A und B \Rightarrow T I_{in} = 0 mA Steuerkolben in hydraulischer Nullposition I_{in} = -10 mA 100 % Ventilöffnung P \Rightarrow B und A \Rightarrow T

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

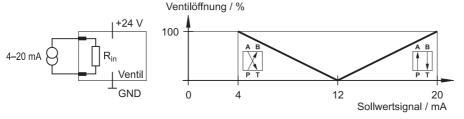
Dieser Sollwerteingang ist ein potenzialfreier Eingang. (Der Potenzialunterschied jedes Eingangs zu GND muss zwischen -15 V und +32 V liegen.) Steht keine potenzialfreie Stromquelle zur Verfügung, muss je nach gewünschter Wirkrichtung ein Anschluss auf 0 V der Sollwertquelle gelegt werden. Volumenstrom-Sollwerteingang ±10 mA potenzialfrei

3.4.3 Volumenstrom-Sollwerteingang ±10 mA massebezogen

Volumenstrom-Sollwerteingang ±10 mA massebezogen

Abbildung 5: Volumenstrom-Sollwerteingang ±10 mA massebezogen (Schaltung und Kennlinie)

Der Kolbenhub ist proportional zum Eingangsstrom I_{in}.


$$\begin{split} I_{in} = +10 \text{ mA} & 100 \text{ % Ventil\"offnung P} \Rightarrow \text{A und B} \Rightarrow \text{T} \\ I_{in} = 0 \text{ mA} & \text{Steuerkolben in hydraulischer Nullposition} \\ I_{in} = -10 \text{ mA} & 100 \text{ % Ventil\"offnung P} \Rightarrow \text{B und A} \Rightarrow \text{T} \end{split}$$

Der Bezugspunkt für diesen Sollwerteingang ist GND.

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

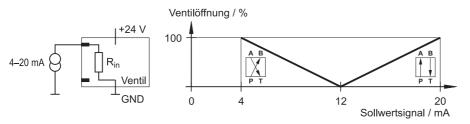
Je nach gewünschter Wirkrichtung darf entweder der eine oder der andere der beiden Sollwerteingangs-Pins nicht angeschlossen werden.

3.4.4 Volumenstrom-Sollwerteingang 4–20 mA potenzialfrei

Volumenstrom-Sollwerteingang 4–20 mA potenzialfrei

Abbildung 6: Volumenstrom-Sollwerteingang 4-20 mA potenzialfrei (Schaltung und Kennlinie)

Der Kolbenhub ist proportional zum Eingangsstrom I_{in}.


 I_{in} = 20 mA 100 % Ventilöffnung P \Rightarrow A und B \Rightarrow T I_{in} = 12 mA Steuerkolben in hydraulischer Nullposition I_{in} = 4 mA 100 % Ventilöffnung P \Rightarrow B und A \Rightarrow T

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

Dieser Sollwerteingang ist ein potenzialfreier Eingang. (Der Potenzialunterschied jedes Eingangs zu GND muss zwischen -15 V und +32 V liegen.) Steht keine potenzialfreie Stromquelle zur Verfügung, muss je nach gewünschter Wirkrichtung ein Anschluss auf 0 V der Sollwertquelle gelegt werden.

Sollwertsignale I_{in} < 3 mA (z. B.: durch Leitungsbruch) bedeuten einen Fehler. Das Ventil wird zur Sicherheit abgeschaltet und geht in den Fail-Safe-Zustand.

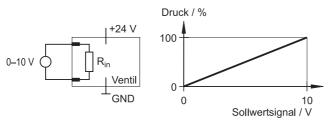
3.4.5 Volumenstrom-Sollwerteingang 4–20 mA massebezogen

Volumenstrom-Sollwerteingang 4–20 mA massebezogen

Abbildung 7: Volumenstrom-Sollwerteingang 4-20 mA massebezogen (Schaltung und Kennlinie)

Der Kolbenhub ist proportional zum Eingangsstrom Iin.

$$\begin{split} I_{in} &= 20 \text{ mA} & 100 \text{ % Ventil\"offnung P} \Rightarrow \text{A und B} \Rightarrow \text{T} \\ I_{in} &= 12 \text{ mA} & \text{Steuerkolben in hydraulischer Nullposition} \\ I_{in} &= 4 \text{ mA} & 100 \text{ % Ventil\"offnung P} \Rightarrow \text{B und A} \Rightarrow \text{T} \end{split}$$


Der Bezugspunkt für diesen Sollwerteingang ist GND.

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

Je nach gewünschter Wirkrichtung darf entweder der eine oder der andere der beiden Sollwerteingangs-Pins nicht angeschlossen werden.

Sollwertsignale I_{in} < 3 mA (z. B.: durch Leitungsbruch) bedeuten einen Fehler. Das Ventil wird zur Sicherheit abgeschaltet und geht in den Fail-Safe-Zustand.

3.4.6 Druck-Sollwerteingang 0–10 V potenzialfrei (D638)

Druck-Sollwerteingang 0–10V potenzialfrei (D638)

Abbildung 8: Druck-Sollwerteingang 0-10 V potenzialfrei (Schaltung und Kennlinie)

Der Druck im geregelten Verbraucheranschluss A ist proportional zur Eingangsspannung $\boldsymbol{U}_{\text{in}}.$

 U_{in} = 10 V 100 % Druck im geregelten Verbraucheranschluss A U_{in} = 0 V 0 % Druck im geregelten Verbraucheranschluss A

Dieser Sollwerteingang ist ein potenzialfreier, differenzieller Eingang. (Der Potenzialunterschied jedes Eingangs zu GND muss zwischen -15 V und +32 V liegen.) Steht keine differenzielle Spannung zur Verfügung, muss ein Anschluss auf 0 V der Sollwertquelle gelegt werden.

3.4.7 Druck-Sollwerteingang 0-10 mA potenzialfrei (D638)

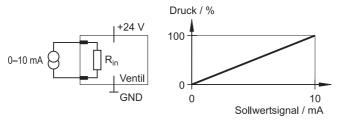


Abbildung 9: Druck-Sollwerteingang 0–10 mA potenzialfrei (Schaltung und Kennlinie)

Der Druck im geregelten Verbraucheranschluss A ist proportional zum Eingangsstrom $I_{\rm in}$.

 I_{in} = 10 mA 100 % Druck im geregelten Verbraucheranschluss A I_{in} = 0 mA 0 % Druck im geregelten Verbraucheranschluss A

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

Dieser Sollwerteingang ist ein potenzialfreier Eingang. (Der Potenzialunterschied jedes Eingangs zu GND muss zwischen -15 V und +32 V liegen.) Steht keine potenzialfreie Stromquelle zur Verfügung, muss ein Anschluss auf 0 V der Sollwertquelle gelegt werden.

3.4.8 Druck-Sollwerteingang 0–10 mA massebezogen (D638)

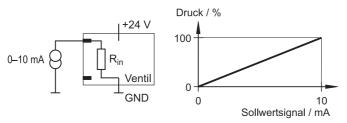


Abbildung 10: Druck-Sollwerteingang 0-10 mA massebezogen (Schaltung und Kennlinie)

Der Druck im geregelten Verbraucheranschluss A ist proportional zum Eingangsstrom $\mathbf{I}_{\text{in}}.$

 I_{in} = 10 mA 100 % Druck im geregelten Verbraucheranschluss A I_{in} = 0 mA 0 % Druck im geregelten Verbraucheranschluss A

Der Bezugspunkt für diesen Sollwerteingang ist GND.

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

Nur jeweils einer der beiden Sollwerteingangs-Pins darf angeschlossen werden.

Druck-Sollwerteingang 0–10 mA potenzialfrei (D638)

Druck-Sollwerteingang 0–10 mA massebezogen (D638)

3.4.9 Druck-Sollwerteingang 4-20 mA potenzialfrei (D638)

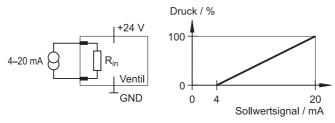


Abbildung 11: Druck-Sollwerteingang 4-20 mA potenzialfrei (Schaltung und Kennlinie)

Der Druck im geregelten Verbraucheranschluss A ist proportional zum Eingangsstrom \mathbf{I}_{in} .

 I_{in} = 20 mA 100 % Druck im geregelten Verbraucheranschluss A I_{in} = 4 mA 0 % Druck im geregelten Verbraucheranschluss A

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

Dieser Sollwerteingang ist ein potenzialfreier Eingang. (Der Potenzialunterschied jedes Eingangs zu GND muss zwischen -15 V und +32 V liegen.) Steht keine potenzialfreie Stromquelle zur Verfügung, muss ein Anschluss auf 0 V der Sollwertquelle gelegt werden.

Sollwertsignale I_{in} < 3 mA (z. B.: durch Leitungsbruch) bedeuten einen Fehler. Das Ventil wird zur Sicherheit abgeschaltet und geht in den Fail-Safe-Zustand.

3.4.10 Druck-Sollwerteingang 4–20 mA massebezogen (D638)

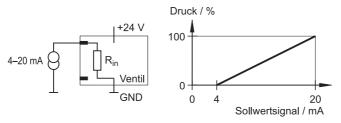


Abbildung 12: Druck-Sollwerteingang 4-20 mA massebezogen (Schaltung und Kennlinie)

Der Druck im geregelten Verbraucheranschluss A ist proportional zum Eingangsstrom $I_{\rm in}$.

 I_{in} = 20 mA 100 % Druck im geregelten Verbraucheranschluss A I_{in} = 4 mA 0 % Druck im geregelten Verbraucheranschluss A

Der Bezugspunkt für diesen Sollwerteingang ist GND.

Der Eingangsstrom I_{in} dieses Sollwerteingangs muss zwischen -25 mA und +25 mA liegen!

Nur jeweils einer der beiden Sollwerteingangs-Pins darf angeschlossen werden.

Sollwertsignale I_{in} < 3 mA (z. B.: durch Leitungsbruch) bedeuten einen Fehler. Das Ventil wird zur Sicherheit abgeschaltet und geht in den Fail-Safe-Zustand.

Druck-Sollwerteingang 4–20 mA potenzialfrei (D638)

Druck-Sollwerteingang 4–20 mA massebezogen (D638)

3.5 Analoge Istwertausgänge

Je nach Modell kann das Regelventil über verschiedene analoge Istwertausgänge für die Volumenstrom- und/oder Druckfunktion (Option) verfügen. (Steckerbelegung des Anbausteckers: siehe Tabelle 6, Seite 36) Analoge Istwertausgänge

3.5.1 Volumenstrom-Istwertausgang 4-20 mA

Der Ausgangsstrom lout ist proportional zum Kolbenhub.

 I_{out} = 20 mA 100 % Ventilöffnung P \Rightarrow A und B \Rightarrow T I_{out} = 12 mA Steuerkolben in hydraulischer Nullposition I_{out} = 4 mA 100 % Ventilöffnung P \Rightarrow B und A \Rightarrow T

Der Bezugspunkt für den Istwertausgang 4-20 mA ist GND.

- Mit dem Istwertausgang 4–20 mA lässt sich eine externe Leitungsbrucherkennung realisieren.
- O Der Istwertausgang 4–20 mA ist kurzschlussfest.

3.5.2 Druck-Istwertausgang 4-20 mA (D638)

Der Ausgangsstrom I_{out} ist proportional zum Druck im geregelten Verbraucheranschluss A.

Der Bezugspunkt für den Istwertausgang 4–20 mA ist GND.

- Mit dem Istwertausgang 4–20 mA lässt sich eine externe Leitungsbrucherkennung realisieren.
- O Der Istwertausgang 4–20 mA ist kurzschlussfest.

3.5.3 Auswertung der Istwertausgänge 4-20 mA

Die Istwertausgänge 4–20 mA können gemäß folgender Schaltung ausgewertet werden.

Auswertung der Istwertausgänge

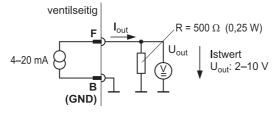


Abbildung 13: Schaltung zur Messung des Istwertes I_{out} für Ventile mit 6+PE-poligem Anbaustecker

3.6 Digitale Ein-/Ausgänge

Je nach Modell verfügt das Regelventil über verschiedene digitale Ein- und Ausgänge.

Digitale Ein-/Ausgänge

3.6.1 Freigabe-Eingang (Option)

Signale am Freigabe-Eingang zwischen 8,5 VDC und 24 VDC bezogen auf GND stellen die Betriebsbereitschaft des Regelventils her. Bei Signalen kleiner 6,5 VDC wird das Ventil in den Fail-Safe-Zustand versetzt. (Steckerbelegung des 6+PE-poligen Anbausteckers: siehe Seite 36)

Digitale Eingänge: Freigabe-Eingang

Wenn der Freigabe-Eingang nicht beschaltet ist, befindet sich das Regelventil im Fail-Safe-Zustand.

ĵ

Die Ventile sind optional auch ohne Freigabe-Eingang erhältlich.

3.6.2 Digitale Ausgänge

Je nach Modell stehen optional bis zu zwei digitale Ausgänge zur Verfügung.

Digitale Ausgänge

3.7 Statusanzeige

Über mehrfarbige Leuchtdioden (Statusanzeige-LEDs) am Elektronikgehäuse wird der Betriebszustand des Ventils und der Netzwerk-Status angezeigt.

Beim Einschalten der Spannungsversorgung des Ventils wird ein Selbsttest der Ventilelektronik durchgeführt, der durch rot-grün blinkende LEDs angezeigt wird.

3.7.1 Modul-Status-LED «MS»

Die Modul-Status-LED «MS» zeigt eine vorhandene Spannungsversorgung und mögliche Betriebs- und Fehlerzustände an.

Modul-Status-LED «MS»	Zustand				
Aus	keine Versorgungsspannung				
Grün	normaler Betrieb				
Grün blinkend	Stand-by-Modus des Ventils				
Rot blinkend	behebbarer Fehler				
Rot	nicht behebbarer Fehler				
Rot-Grün blinkend	Selbsttest				

Tabelle 2: Zustände der Modul-Status-LED «MS»

Statusanzeige-LEDs

Abbildung 14: Statusanzeige-LEDs

3.7.2 Netzwerk-Status-LED «NS»

Die Netzwerk-Status-LED «NS» zeigt den Status des CAN-Netzwerks an.

Netzwerkstatus-LED

Netzwerk-Status-LED «NS»	Zustand					
Aus	keine Versorgungsspannung / nicht online					
Grün blinkend	online, aber keine Verbindung mit anderen CAN-Bus-Teilnehmern					
Grün	online und Verbindung mit anderen CAN- Bus-Teilnehmern					
Rot blinkend	Zeitüberschreitung					
Rot	schwerwiegender Fehler					
Rot-Grün blinkend	Selbsttest					

Tabelle 3: Zustände der Netzwerk-Status-LED «NS»

Für Ihre Notizen.

Allgemeine technische Daten

4 Technische Daten und Lieferumfang

4.1 Allgemeine technische Daten

Maximaler Betriebsdruck

Anschlüsse P und B 350 bar

Anschluss A

bei D636 350 bar

bei D638 abhängig vom Drucksensor, max. 350 bar

Anschluss T ohne Y 50 bar (vgl. Kapitel 4.2.2, Seite 24)

Anschluss T mit Y 350 bar

Anschluss Y drucklos zum Tank

Zulässige Umgebungsbedingungen

Umgebungstemperatur -20 °C bis +60 °C

Rüttelfestigkeit 30 g, 3 Achsen, Frequenz: 5–2000 Hz Stoßfestigkeit 60 g, 6 Richtungen, Halbsinus 11 ms

Dichtungswerkstoff HNBR, FPM, andere auf Anfrage

Hydraulikflüssigkeit

zulässige Flüssigkeiten Hydrauliköl auf Mineralölbasis nach

DIN 51524 Teil 1-3, andere Flüssigkeiten

auf Anfrage

zulässige Temperatur -20 °C bis +80 °C

Viskosität v

empfohlen 15-100 mm²/s zulässig 5-400 mm²/s

Sauberkeitsklasse, empfohlen

für Funktionssicherheit ISO 4406 < 15/12 für Lebensdauer ISO 4406 < 14/11

(Verschleiß)

Die Sauberkeit der Hydraulikflüssigkeit hat großen Einfluss auf Funktionssicherheit (sichere Steuerkolbenpositionierung, hohe Auflösung) und Verschleißschutz (Steuerkanten, Druckverstärkung, Leckverluste) des Regelventils.

Systemfilter

Hochdruckfilter (ohne Bypass, jedoch mit Verschmutzungsanzeige) im Hauptstrom möglichst direkt vor dem Ventil

Filterfeinheit, empfohlen

für Funktionssicherheit $\beta_{10} \ge 75$ (10 μ m absolut) für Lebensdauer $\beta_6 \ge 75$ (6 μ m absolut) (Verschleiß)

Staubschutzplatte

Auslieferung mit öldichter Staubschutzplatte

Montagemöglichkeit

jede Lage, fest oder beweglich.

Bei der Montage des Regelventils sind die Sicherheitshinweise

aus Kapitel 6, ab Seite 31, zu beachten!

Montagefläche

Ebenheit < 0,01 mm auf 100 mm

mittlere Rauhtiefe R_a < 0,8 μm

Masse 2,5 kg

4.2 Hydraulische Daten

Ventilbauart Schieberventil, einstufig, mit Steuerbuchse Hydraulische Daten

Lochbild gemäß ISO 4401-03-03-0-94

(mit oder ohne Leckölanschluss Y, vgl. Kapitel 4.2.2, Seite 24)

Ø der Anschlussbohrungen 7,9 mm

Wege-Funktion 2-Wege, 3-Wege-, 4-Wege- und

2x2-Wege-Funktion

Betätigung direkt mit Permanentmagnet-Linearmotor

Steuerölversorgung keine

Nennvolumenstrom Q_N 5 / 10 / 20 / 40 l/min (modellabhängig)

(bei $\Delta p_N = 35$ bar pro Steuerkante,

Toleranz ±10 %)

Max. Leckvolumenstrom Q_L 1) 0,15 / 0,3 / 0,6 / 1,2 l/min (modellabhängig)

Max. Volumenstrom 75 l/min

Überdeckung Nullüberdeckung, < 3 % oder 10 % positi-

ve Überdeckung (modellabhängig)

Stellzeit für 0 bis 100 % Hub 12 ms (typisch)

Umkehrspanne 1) < 0,1 % (in der Q-Funktion)

Hysterese 1) < 0,2 % (in der Q-Funktion)

Nullverschiebung < 1,5 % (bei $\Delta T = 55 \text{ K}$)

Linearität der Druckfunktion

(nur bei D638)

< 0,5 %

¹⁾ Bei Betriebsdruck p_p = 140 bar, Ölviskosität v = 32 mm²/s und einer Öltemperatur von 40 °C

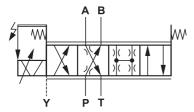
4.2.1 Wege-Funktionen der Regelventile

Folgende Wege-Funktionen sind mit den Regelventilen der Baureihe D636/D638 (optional) möglich:

Wege-Funktionen

- 4-Wege-Funktion
- 3-Wege-Funktion
- · 2-Wege-Funktion
- 2x2-Wege-Funktion

4-Wege- und 3-Wege-Funktion

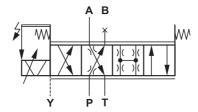

In der 4-Wege-Funktion sind die Regelventile zur Steuerung des Volumenstroms in den Anschlüssen A und B verwendbar (Einsatz als Drosselventile).

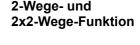
Um die 3-Wege-Funktion zu erhalten, ist wahlweise der Anschluss A oder B zu verschließen.

Wenn der Druck im Tankanschluss T den Wert 50 bar übersteigt, muss der Leckölanschluss Y verwendet werden (vgl. Kapitel 4.2.2, Seite 24).

Die Ventile sind wahlweise mit Nullüberdeckung, kleiner 3 % oder 10 % positiver Überdeckung erhältlich.

4-Wege- und 3-Wege-Funktion




Abbildung 15: 4-Wege-/3-Wege-Funktion mit Fail-Safe-Funktion (Hydrauliksymbole)

2-Wege- und 2x2-Wege-Funktion

In der 2-Wege- und 2x2-Wege-Funktion sind die Regelventile zur Steuerung des Volumenstroms in eine Richtung verwendbar (Einsatz als Drosselventile).

In der 2x2-Wege-Funktion kann das Ventil in 2-Wege-Anwendungen für höhere Volumenströme eingesetzt werden. Hierzu müssen die Anschlüsse P mit B und A mit T extern verbunden werden.

Der Leckölanschluss Y muss bei der 2x2-Wege-Funktion immer angeschlossen werden (vgl. Kapitel 4.2.2, Seite 24).

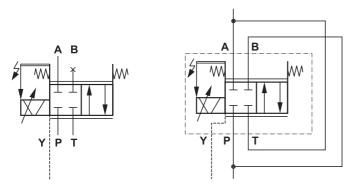


Abbildung 16: 2-Wege-/2x2-Wege-Funktion (Hydrauliksymbole)

4.2.2 Leckölanschluss Y

Die Regelventile der Baureihen D636 und D638 können wahlweise mit oder ohne Leckölanschluss Y geliefert werden.

Leckölanschluss Y

Elektrische Daten

Bei der Bestellung des Regelventils muss festgelegt werden, ob der Anschluss Y verwendet werden soll.

Der **Leckölanschluss Y** muss in folgenden Fällen verwendet werden:

- · wenn der Druck im Tankanschluss T größer als 50 bar wird
- bei der 2x2-Wege-Funktion

4.3 Elektrische Daten

Versorgungsspannung

nominal 24 VDC, 18 bis 32 VDC

Einschaltdauer

100 %

Anbaustecker

6+PE-poliger Stecker mit Stiftkontakten gemäß DIN EN 175201-804

Schutzart gemäß DIN EN 60529

IP65 ohne Steckverbinder

IP67 zugehörige Steckverbinder gesteckt und verriegelt

Leistungsaufnahme

P_{min} (Motor in Ruhestellung) 9,6 W (0,4 A bei 24 VDC) P_{max} (bei max. Volumenstrom) 28,8 W (1,2 A bei 24 VDC)

EMV-Schutzanforderungen

gemäß DIN EN 55011, DIN EN 50081-2 und DIN EN 61000-6-2

Ein-/Ausgänge

Istwertausgang 4–20 mA $R_{L max} = 500 \Omega$ gegen GND

Freigabe-Eingang (Funktion: Signale am Freigabe-Eingang zwisiehe Kapitel 3.6.1, Seite 18) Signale am Freigabe-Eingang zwisiehe Kapitel 3.6.1, Seite 18)

auf GND stellen die Betriebsbereitschaft des Regelventils her. Bei Signalen kleiner 6,5 VDC wird das Ventil in den Fail-Safe-Zustand versetzt.

CAN-Bus-Schnittstelle

CAN-Anbaustecker 5-poliger Steckverbinder mit Stiftkon-

takten (M12 x 1)

Physikalisch DIN ISO 11898 CAN-HIGH SPEED

Kommunikationsprofil CANopen DS 301, Version 4.0

Geräteprofil CANopen DSP 408

Spannungsfestigkeit 40 VDC

Externe Absicherung pro Regelventil

1,6 A träge

4.4 Kennlinien

4.4.1 Sprungantwort, Frequenzgang und Volumenstromdiagramm

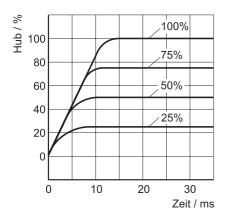


Abbildung 17: Sprungantwort

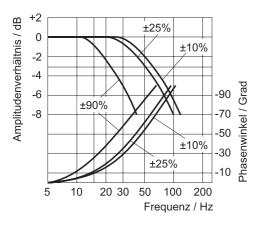


Abbildung 18: Frequenzgang

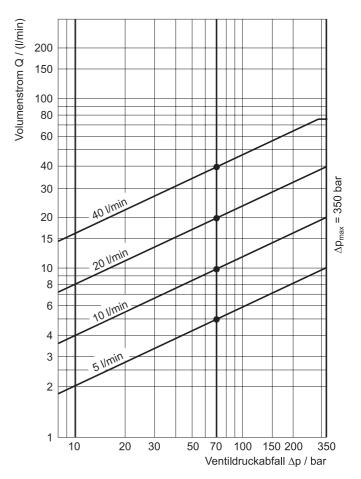


Abbildung 19: Volumenstromdiagramm

4.4.2 Volumenstrom-Signal-Kennlinie

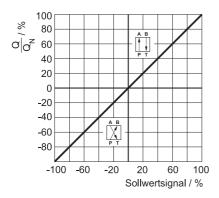


Abbildung 20: Volumenstrom-Signal-Kennlinie

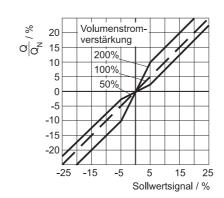


Abbildung 21: Volumenstrom-Signal-Kennlinie (Nullschnitt)

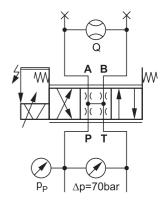


Abbildung 22: Aufbau zur Messung der Volumenstrom-Signal-Kennlinie

4.4.3 Druck-Signal-Kennlinien

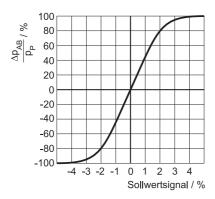


Abbildung 23: Druck-Signal-Kennlinie des lagegeregelten Ventils

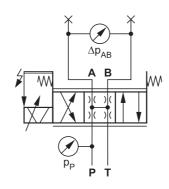


Abbildung 24: Aufbau zur Messung der Druck-Signal-Kennlinie bei lagegeregelten Ventilen

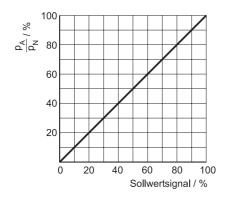


Abbildung 25: Druck-Signal-Kennlinie des Druckregelventils (D638)

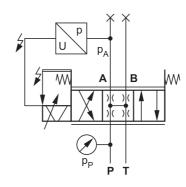


Abbildung 26: Aufbau zur Messung der Druck-Signal-Kennlinie bei Druckregelventilen (D638)

4.5 Abmessungen (Einbauzeichnung)

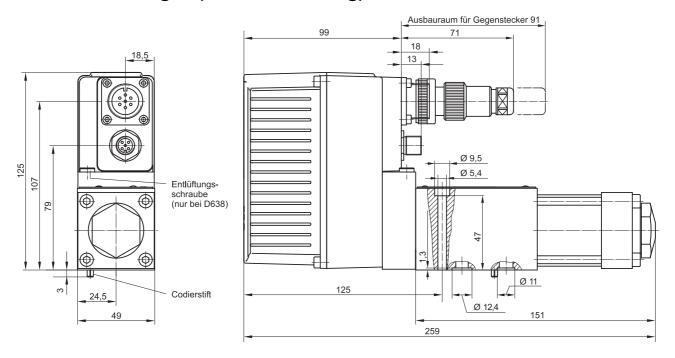


Abbildung 27: Einbauzeichnung (Maße in mm)

4.6 Lochbild und Montagefläche

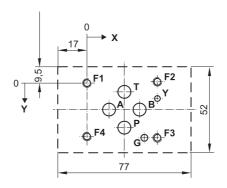


Abbildung 28: Lochbild, ISO 4401-03-03-0-94 ohne Anschluss X (Maße in mm)

	Р	Α	В	T	X ¹	Υ	F ₁	F ₂	F ₃	F ₄	G ²
	Ø 7,5	Ø 7,5	Ø 7,5	Ø 7,5	-	Ø 3,3	M5	M5	M5	M5	Ø 4,0
x	21,5	12,7	30,2	21,5	-	40,5	0	40,5	40,5	0	33
у	25,9	15,5	15,5	5,1	-	9,0	0	-0,75	31,75	31	31,75

Tabelle 4: Maße zum Lochbild (Maße in mm)

(1 Anschluss X nicht bohren; 2 Bohrung G für Codierstift muss mindestens 4 mm tief sein)

4.7 Lieferumfang

Der Lieferumfang des Regelventils besteht aus:

Lieferumfang

- Regelventil mit montierter öldichter Staubschutzplatte am Hydraulikanschluss
- 4 O-Ringe ID 9,25 x Ø 1,8 für die Anschlüsse P, T, A, B
- 1 O-Ring ID 7,65 x \varnothing 1,8 für den Anschluss Y

5 Transport und Lagerung Verpackung/Transport

5 Transport und Lagerung

Die Einhaltung der zulässigen Umgebungsbedingungen (siehe Kapitel 4, Seite 21) muss sichergestellt werden.

Sicherheitshinweise für Transport und Lagerung

Die Regelventile dürfen nicht ohne montierte Staubschutzplatte transportiert oder gelagert werden!

5.1 Verpackung/Transport

Bitte beachten Sie Folgendes:

- Regelventile beim Verpacken oder beim Transport nicht beschädigen
- Regelventile nur in der ordnungsgemäß verschlossenen Originalverpackung transportieren
- Originalverpackung des Regelventils für eine spätere Verwendung aufbewahren
- Transportschäden unverzüglich dem Transporteur und uns schriftlich mitteilen
- Staubschutzplatte erst direkt vor der Montage des Regelventils entfernen
- Staubschutzplatte und dazugehörige Befestigungsschrauben aufbewahren
- Regelventile nur mit montierter Staubschutzplatte transportieren

5.2 Lagerung

Bitte beachten Sie Folgendes:

- Regelventile nur in der ordnungsgemäß verschlossenen Originalverpackung lagern
- · Regelventile vor Staub und Feuchtigkeit schützen
- Regelventile nur mit montierter Staubschutzplatte lagern, damit das Ventil vor dem Eindringen von Schmutz oder Feuchtigkeit geschützt ist

Verpackung/Transport

Lagerung

5 Transport und Lagerung Lagerung

Für Ihre Notizen.

6 Montage/Demontage und Anschluss an die Systemhydraulik

Montage, Demontage, elektrischer und hydraulischer Anschluss und Wartung von Regelventilen sowie Störungsbeseitigung bei Regelventilen darf nur durch hierfür ausgebildetes, geschultes und autorisiertes Fachpersonal nach geltenden Vorschriften in spannungsfreiem und drucklosem Zustand und bei ausgeschalteter Maschine erfolgen.

Sicherheitshinweise für die Montage/ Demontage und den Anschluss an die Systemhydraulik

Die Maschine muss hierbei gegen Wiedereinschalten gesichert sein. Geeignete Maßnahmen hierzu sind z. B.:

- Hauptbefehlseinrichtung verschließen und Schlüssel abziehen und/oder
- · Warnschild am Hauptschalter anbringen

Unter Druck herausspritzendes Hydrauliköl kann zu schweren Verletzungen, Verbrennungen und Bränden führen.

Vor der Montage/Demontage sind alle Druckleitungen und Speicher im Hydraulikkreis drucklos zu machen.

Regelventile und Hydraulikanschlussleitungen können während des Betriebs sehr heiß werden.

Bei der Montage, Demontage oder Wartung der Regelventile ist geeignete Arbeitsschutzausrüstung, wie z. B. Arbeitshandschuhe, zu tragen.

Beim Umgang mit Hydraulikflüssigkeiten sind die für das jeweilige Produkt geltenden Sicherheitsbestimmungen zu beachten.

- Technische Daten und besonders die Angaben auf dem Typenschild des Regelventils sind zu beachten und einzuhalten.
- Die Staubschutzplatte des Regelventils darf erst kurz vor dem Aufsetzen des Regelventils auf die Montagefläche vom Hydraulikanschluss des Ventils entfernt werden.
- Die Montagefläche muss direkt vor dem Aufsetzen des Ventils auf Verunreinigungen geprüft und gegebenenfalls gereinigt werden.
- Um Überhitzung des Regelventils zu vermeiden, ist das Ventil so zu montieren, dass gute Belüftung sichergestellt ist.

 Die Ventile dürfen nicht direkt auf Maschinenteile montiert werden, die starken Vibrationen oder Stößen ausgesetzt sind.

 Auf ruckartig bewegten Einheiten sollte die Kolbenrichtung nicht der Bewegungsrichtung entsprechen.
- Regelventile mit Entlüftungsschraube (D638) sind so zu montieren, dass eine Entlüftung des Ventils vorgenommen werden kann.

 Damit die eventuell im Ventil enthaltene Luft nach dem Öffnen der Entlüftungsschraube entweichen kann, sollte die Entlüftungsschraube nach oben zeigen.

6.1 Montage des Regelventils

Die Befestigungsschrauben der Staubschutzplatte dürfen nicht zur Befestigung des Regelventils verwendet werden!

Montage des Regelventils

- Bei der Montage des Regelventils muss die Montagefläche frei von Rückständen und Verschmutzungen sein. Zum Reinigen der Montagefläche einen sauberen, weichen und fusselfreien Reinigungslappen verwenden. Keine Putzwolle verwenden! Keine Mittel zur Reinigung verwenden, die die Montagefläche mechanisch oder chemisch angreifen.
- Regelventile mit Entlüftungsschraube (D638) sind so zu montieren, dass eine Entlüftung des Ventils vorgenommen werden kann. Damit die eventuell im Ventil enthaltene Luft nach dem Öffnen der Entlüftungsschraube entweichen kann, sollte die Entlüftungsschraube nach oben zeigen.
- Zur Montage des Regelventils wird ein Innensechskantschlüssel SW 4 benötigt.
- Das Regelventil kann in jeder Lage, fest oder beweglich, eingebaut werden. Merkmale der Montagefläche: siehe Kapitel 4.1, Seite 22.

Vorgehensweise zur Montage des Regelventils:

- 1. Montagefläche reinigen.
- 2. Staubschutzplatte vom Hydraulikanschluss des Ventils entfernen und für eine spätere Verwendung, z. B. Wartung, aufbewahren.
- 3. O-Ringe der Anschlussbohrungen auf Vorhandensein und richtigen Sitz überprüfen.
- 4. Regelventil auf die Montagefläche aufsetzen und entsprechend den Montagebohrungen ausrichten.
- 5. Regelventil befestigen. Hierzu die Montageschrauben (Innensechskantschrauben) verspannungsfrei über Kreuz anziehen (Anzugsdrehmomente: siehe untenstehende Tabelle).

Montageschrauben (nach DIN EN ISO 4762)		Anzugsdrehmoment / Nm ±10 % (nach DIN EN ISO 4762)		
		Güteklasse 10.9	Güteklasse 12.9	
M 5 x 55	4	6,8	10	

Tabelle 5: Montagematerial und Anzugsdrehmomente

6.2 Demontage des Regelventils

Montage, Demontage, elektrischer und hydraulischer Anschluss und Wartung von Regelventilen sowie Störungsbeseitigung bei Regelventilen darf nur durch hierfür ausgebildetes, geschultes und autorisiertes Fachpersonal nach geltenden Vorschriften in spannungsfreiem und drucklosem Zustand und bei ausgeschalteter Maschine erfolgen.


Die Maschine muss hierbei gegen Wiedereinschalten gesichert sein. Geeignete Maßnahmen hierzu sind z. B.:

- Hauptbefehlseinrichtung verschließen und Schlüssel abziehen und/oder
- Warnschild am Hauptschalter anbringen

Unter Druck herausspritzendes Hydrauliköl kann zu schweren Verletzungen, Verbrennungen und Bränden führen.

Vor der Montage/Demontage sind alle Druckleitungen und Speicher im Hydraulikkreis drucklos zu machen.

Zur Demontage des Regelventils wird ein Innensechskantschlüssel SW 4 benötigt.

Die Demontage des Regelventils erfolgt sinngemäß in umgekehrter Reihenfolge wie die Montage des Regelventils.

Vorgehensweise zur Demontage des Regelventils:

- Montageschrauben des Regelventils lösen.
- 2. Regelventil von der Montagefläche abnehmen.
- 3. O-Ringe der Anschlussbohrungen auf Vorhandensein und richtigen Sitz überprüfen.
- 4. Staubschutzplatte am Hydraulikanschluss anbringen.
- 5. Regelventil in Originalverpackung aufbewahren.
- 6. Anschlüsse des Hydrauliksystems verschließen um Verunreinigung der Hydraulikflüssigkeit zu vermeiden.

Demontage des Regelventils

Für Ihre Notizen.

7 Elektrischer Anschluss

Montage, Demontage, elektrischer und hydraulischer Anschluss und Wartung von Regelventilen sowie Störungsbeseitigung bei Regelventilen darf nur durch hierfür ausgebildetes, geschultes und autorisiertes Fachpersonal nach geltenden Vorschriften in **spannungsfreiem und drucklosem** Zustand und bei **ausgeschalteter Maschine** erfolgen.

Sicherheitshinweise für den elektrischen Anschluss

Die Maschine muss hierbei gegen Wiedereinschalten gesichert sein. Geeignete Maßnahmen hierzu sind z. B.:

- Hauptbefehlseinrichtung verschließen und Schlüssel abziehen und/oder
- · Warnschild am Hauptschalter anbringen

Regelventile und Hydraulikanschlussleitungen können während des Betriebs sehr heiß werden.

Bei der Montage, Demontage oder Wartung der Regelventile ist geeignete Arbeitsschutzausrüstung, wie z.B. Arbeitshandschuhe, zu tragen.

Beim Umgang mit Hydraulikflüssigkeiten sind die für das jeweilige Produkt geltenden Sicherheitsbestimmungen zu beachten.

- Technische Daten und besonders die Angaben auf dem Typenschild des Regelventils sind zu beachten und einzuhalten.
- Anschlussleitungen des Regelventils nicht in unmittelbarer Nähe von Leitungen höherer Spannungen verlegen oder zusammen mit Leitungen, die induktive oder kapazitive Lasten schalten, verlegen.
- Für die Spannungsversorgung muss ein EMV-gerechtes Netzteil verwendet werden. Der elektrische Anschluss muss EMV-gerecht ausgeführt werden.

Vorgehensweise zum elektrischen Anschluss des Regelventils:

- 1. Den elektrischen Anschluss entsprechend der in Kapitel 7.1 (Seite 36) beschriebenen Steckerbelegung vornehmen.
- 2. Potenzialausgleichssystem, Schutzerdung und Schirmung gemäß der anliegenden technischen Notiz TN 353 aufbauen.
- 3. CAN-Bus-Verdrahtung entsprechend den Erläuterungen in Kapitel 7.2 (Seite 37) aufbauen.

Elektrischer Anschluss des Regelventils

7 Elektrischer Anschluss Steckerbelegung

7.1 Steckerbelegung

7.1.1 Anbaustecker

Pin	Signalart Signal	Spannung potenzialfrei ±10 V, 0–10 V	Strom potenzialfrei ±10 mA, 0–10 mA, 4–20 mA	Strom massebezogen ±10 mA, 0–10 mA, 4–20 mA	
A	Versorgungs- spannung	24 VDC (18 bis 32 VDC)			
В	Versorgung-Null / Signal-Null		0 V (GND)		
С	Freigabe-Eingang	8,5–24 VDC bezogen auf Pin B: Betriebsbereitschaft des Regelventils < 6,5 VDC bezogen auf Pin B: Fail-Safe-Zustand des Regelventils (siehe auch Kapitel 3.6.1, Seite 18)			
		Der Potenzialunterschied (gemessen gegen Pin B) muss zwischen -15 V und +32 V liegen.			
		$U_{in} = U_{DE}$ $R_{in} = 300 \text{ k}\Omega$	$I_{in} = I_D = -I_E$ $R_{in} = 200 \Omega$	$I_{in} = I_{D}$ $R_{in} = 200 \Omega$	
D		differenziell		Pin E nicht anschließen!	
E	Sollwerteingang	Der Eingangsstrom I _{in} dieses Sollwerteingangs zwischen -25 mA und +25 mA liegen!			
			wertsignale I _{in} < 3 mA (z.)	en 4–20 mA bedeuten Soll- B.: durch Leitungsbruch) ei- rd zur Sicherheit abgeschaltet Zustand.	
F	Istwertausgang	I_{out} : 4–20 mA bezogen auf GND (I_{out} ist proportional zur Position des Steuerkolbens bzw. zum geregelten Druck (bei D638); der Ausgang ist kurzschlussfest; zur Auswertung des Istwertausganges siehe Kapitel 3.5.3, Seite 17); R_L : 0-500 Ω			
(I)	Schutzleiterkontakt				

Tabelle 6: Steckerbelegung des 6+PE-poligen Anbausteckers

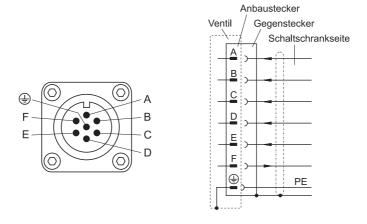


Abbildung 29: Steckerbelegung des 6+PE-poligen Anbausteckers (Sicht auf den Anbaustecker am Ventil)

Der Gegenstecker für den 6+PE-poligen Anbaustecker ist als Zubehör erhältlich (siehe Kapitel 11.2, Seite 49).

7 Elektrischer Anschluss Steckerbelegung

7.1.2 CAN-Anbaustecker

Pin	Signal	
1	CAN_SHLD	Schirm
2	CAN_V+	ist im Ventil nicht angeschlossen
3	CAN_GND	
4	CAN_H	Transceiver H
5	CAN_L	Transceiver L

Tabelle 7: Steckerbelegung des CAN-Anbausteckers

CAN-Anbaustecker

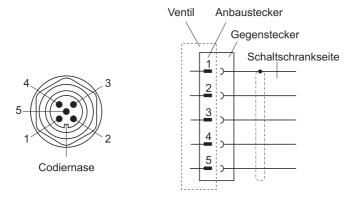


Abbildung 30: Steckerbelegung des CAN-Anbausteckers (Sicht auf den CAN-Anbaustecker am Ventil)

- Die Ausrichtung des CAN-Anbausteckers kann variieren. Beachten Sie bitte die Orientierung der Pins bezüglich der Codiernase!
- Wir empfehlen die Verwendung von konfektionierten Leitungen mit angespritztem, geradem Gegenstecker (siehe Tabelle 11, Seite 40).

7.2 Verdrahtung von CAN-Netzwerken

Das Regelventil ist mit einer galvanisch getrennten CAN-Bus-Schnittstelle ausgestattet. Die CAN-Bus-Schnittstelle wird intern versorgt; daher ist der Anschluss von CAN_V+ 24 VDC (Pin 2 des CAN-Anbausteckers) nicht zwingend erforderlich.

Bei der Verdrahtung von CAN-Netzwerken sind folgende Punkte zu beachten:

- Die in CAN-Netzwerken verwendeten Leitungen, Steckverbinder und Abschlusswiderstände sollten DIN ISO 11898 entsprechen.
- Generell sind alle Hinweise aus der anliegenden technischen Notiz TN 353 einzuhalten.
- Abgeschirmte Leitungen mit vier Adern (twisted pair) und Wellenwiderstand 120 Ω verwenden (CAN_H, CAN_L, CAN_GND und CAN_SHLD (Schirm der Leitung) geerdet, optional CAN_V+ 24 VDC).
- Eine CAN-Bus-Leitung darf sich nicht verzweigen, kurze Stichleitungen mit T-Stück sind jedoch erlaubt.
- Stichleitungen müssen so kurz wie möglich sein (maximale Stichleitungslänge: siehe Tabelle 10, Seite 40).
- An beiden CAN-Bus-Leitungsenden muss die Leitung zwischen CAN_L und CAN_H durch einen Abschluss-Stecker mit einem Abschlusswiderstand von 120 Ω ± 10 % abgeschlossen werden.
- Bezugspotenzial CAN_GND und CAN_SHLD an **nur einem Punkt** (z. B. einem Abschluss-Stecker) mit Schutzerde (PE) verbinden.
- Die Übertragungsrate muss der CAN-Bus-Leitungslänge angepasst werden (siehe Tabelle 8, Seite 39).
- CAN-Bus-Leitungen nicht in unmittelbarer N\u00e4he von St\u00f6rquellen verlegen. L\u00e4sst sich dies nicht vermeiden, doppelt geschirmte Leitungen verwenden.

----- CAN_H

CAN_L

CAN_GND

CAN_GND

CAN_SHLD

Stichleitungslänge

Buchsenkontakte

Stiftkontakte

Abschluss-Stecker mit Stiftkontakten

Abschluss-Stecker mit Buchsenkontakten

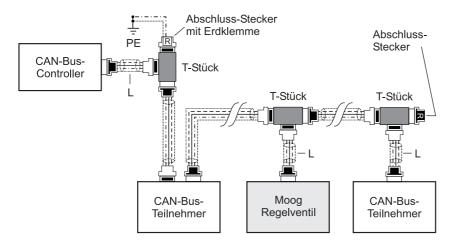


Abbildung 31: Verdrahtungsbeispiel CAN-Netzwerk

Verdrahtung von CAN-Netzwerken

Bei CAN-Bus-Teilnehmern ohne galvanisch getrennte CAN-Bus-Schnittstelle ist CAN_GND im Allgemeinen geräteintern mit der Betriebsspannung 0V verbunden. In diesen Fällen muss die Betriebsspannungs-Anschlussleitung an der gleichen Stelle wie die CAN_GND-Anschlussleitung geerdet werden.

Aus Störsicherheitsgründen sollte in weitläufigen CAN-Netzwerken auf die Verwendung von CAN-Bus-Teilnehmer ohne galvanisch getrennte CAN-Bus-Schnittstelle verzichtet werden.

Kann auf CAN-Bus-Teilnehmer ohne galvanisch getrennte CAN-Bus-Schnittstelle nicht verzichtet werden, müssen diese in unmittelbarer Nähe zum zentralen Erdungspunkt angeordnet werden. Die Leitungslänge zu diesem zentralen Erdungspunkt sollte so gering als möglich gehalten werden!

7.2.1 Leitungslängen und Leitungsquerschnitte in CAN-Netzwerken

Übertragungsrate	Maximale Leitungslänge
1.000 kBit/s	25 m
800 kBit/s	50 m
500 kBit/s	100 m
250 kBit/s	250 m
125 kBit/s	500 m
100 kBit/s	650 m
50 kBit/s	1.000 m
20 kBit/s	2.500 m
10 kBit/s	5.000 m

Empfehlung für maximale Leitungslängen in CAN-Netzwerken

Tabelle 8: Empfehlung für maximale Leitungslängen in CAN-Netzwerken in Abhängigkeit von der Übertragungsrate

	Maximale Leitungslänge bei n CAN-Bus-Teilnehmern			
Leitungsquerschnitt	n = 32 n = 64 n = 100			
0,25 mm²	200 m	170 m	150 m	
0,5 mm²	360 m	310 m	270 m	
0,75 mm²	550 m	470 m	410 m	

Tabelle 9: Empfehlung für maximale Leitungslängen in CAN-Netzwerken in Abhängigkeit vom Leitungsquerschnitt und der Anzahl der CAN-Bus-Teilnehmer

	Maximale Stichleitungslänge		
Übertragungsrate	Maximum Kumuliert		
1.000 kBit/s	2 m	20 m	
500 kBit/s	6 m	39 m	
250 kBit/s	6 m	78 m	
125 kBit/s	6 m	156 m	

Maximal zulässige Stichleitungslänge in CAN-Netzwerken

Tabelle 10: Maximal zulässige Stichleitungslängen in CAN-Netzwerken

7.2.2 Geeignete Leitungstypen

Hersteller	Leitungstyp
Hans Turck GmbH & Co. KG Witzlebenstraße 7 45472 Mülheim an der Ruhr Tel.: (+49) 208 4952 0, Fax: (+49) 208 4952 264 E-Mail: turckmh@mail.turck-globe.de http://www.turck.com	577 Flexlife thin cable, 5710 Flexlife mid cable, 575 Flexlife thick cable

Geeignete Leitungstypen für CAN-Netzwerke

Tabelle 11: Geeignete Leitungstypen für CAN-Netzwerke

8 Inbetriebnahme des Regelventils

Montage, Demontage, elektrischer und hydraulischer Anschluss und Wartung von Regelventilen sowie Störungsbeseitigung bei Regelventilen darf nur durch hierfür ausgebildetes, geschultes und autorisiertes Fachpersonal nach geltenden Vorschriften in spannungsfreiem und drucklosem Zustand und bei ausgeschalteter Maschine erfolgen.

Sicherheitshinweise zur Inbetriebnahme des Regelventils

Die Maschine muss hierbei gegen Wiedereinschalten gesichert sein. Geeignete Maßnahmen hierzu sind z. B.:

- Hauptbefehlseinrichtung verschließen und Schlüssel abziehen und/oder
- Warnschild am Hauptschalter anbringen

Der Betrieb von Maschinenanlagen mit undichten Regelventilen oder einem undichten Hydrauliksystem ist gefährlich und unzulässig.

Bei der Erstinbetriebnahme des Regelventils am Feldbus empfehlen wir den Betrieb des Ventils in drucklosem Zustand!

Unter Druck herausspritzendes Hydrauliköl kann zu schweren Verletzungen, Verbrennungen und Bränden führen.

Vor der Montage/Demontage sind alle Druckleitungen und Speicher im Hydraulikkreis drucklos zu machen.

Regelventile und Hydraulikanschlussleitungen können während des Betriebs sehr heiß werden.

Bei der Montage, Demontage oder Wartung der Regelventile ist geeignete Arbeitsschutzausrüstung, wie z. B. Arbeitshandschuhe, zu tragen.

Beim Umgang mit Hydraulikflüssigkeiten sind die für das jeweilige Produkt geltenden Sicherheitsbestimmungen zu beachten.

- Technische Daten und besonders die Angaben auf dem Typenschild des Regelventils sind zu beachten und einzuhalten.
- Die Staubschutzplatte des Regelventils darf erst kurz vor dem Aufsetzen des Regelventils auf die Montagefläche vom Hydraulikanschluss des Ventils entfernt werden.
- Die Staubschutzplatte des Regelventils ist sofort nach der Demontage des Ventils am Hydraulikanschluss des Ventils anzubringen.
- Neuöl ist verunreinigt. Das Hydrauliksystem muss über einen Einfüllfilter mit einer Filterfeinheit von mindestens $\beta_{10} \geq 75$ (10 µm absolut) befüllt werden.
- Vor der Erstinbetriebnahme einer Neuanlage oder nach Umbauarbeiten muss die Hydraulikanlage gemäß den Vorgaben des Anlagenherstellers sorgfältig gespült werden.

Zur Inbetriebnahme sind folgende Schritte erforderlich:

- 1. Vorbereiten der Hydraulikanlage gemäß Kapitel 8.1 (Seite 42).
- 2. Herstellen des hydraulischen Anschlusses des Ventils gemäß Kapitel 6.1 (Seite 32).
- Herstellen des elektrischen Anschlusses des Ventils gemäß Kapitel 7 (ab Seite 35).
- Anschließen des Ventils an den Feldbus gemäß Kapitel 8.3 (ab Seite 43).
 - Zur Erleichterung der Inbetriebnahme am CAN-Bus ist eine Windows-basierte Konfigurationssoftware verfügbar. Die Konfigurationssoftware ist eine graphische Benutzeroberfläche, die die Parametrierung und Diagnose des Regelventils erleichtert und einen Ventiltest ermöglicht. Erläuterungen zur Konfigurationssoftware können dem dazugehörigen Software-Handbuch bzw. der Online-Hilfe der Konfigurationssoftware entnommen werden.
- 5. Inbetriebnahme der Hydraulikanlage gemäß Kapitel 8.2 (ab Seite 43).

Inbetriebnahme des Regelventils

8.1 Hydraulikanlage befüllen und spülen

Vorgehensweise zum Befüllen und Spülen der Hydraulikanlage:

- 1. Hydraulikanlage druckfrei machen.
- Hydraulikanlage gemäß den Vorgaben des Anlagenherstellers befüllen.
- 3. Vor dem Spülvorgang geeignete Spülelemente an Stelle der Hochdruckfilterelemente in die Druckfilter einsetzen.
- 4. Regelventil demontieren (siehe Kapitel 6.2, Seite 33).
- 5. Statt des Regelventils muss eine Spülplatte oder, wenn es die Anlage ermöglicht, ein Schaltventil angebaut werden.

Mit diesem Schaltventil dürfen keine gefahrbringenden Zustände in der Anlage herbeigeführt werden.

- Mit der Spülplatte werden die P- und T-Leitungen gespült.

 Mit dem Schaltventil kann auch der Verbraucher mit den Leitungen A und B gespült werden.
- 6. Hydraulikanlage gemäß den Vorgaben des Anlagenherstellers sorgfältig spülen. Bitte beachten Sie dabei Folgendes:
 - Während des Spülvorgangs sollte die Betriebstemperatur des Hydrauliköls erreicht werden.
 - Mindestspülzeit t einhalten: t = (V/Q) x 5 [h]
 (V = Tankinhalt/I, Q = Fördermenge der Pumpe/(I/min))
 - Spülvorgang beenden wenn Systemreinheit 15/12 gemäß ISO 4406 bzw. Systemreinheit 6 gemäß NAS 1638 oder besser erreicht ist.
- 7. Hydraulikanlage druckfrei machen.
- 8. Spülelemente in den Druckfiltern durch passende Hochdruckelemente ersetzen.
- 9. Spülplatte bzw. Schaltventil abbauen.
- 10. Regelventil montieren (siehe Kapitel 6.1, Seite 32).

Hydraulikanlage befüllen und spülen

8.2 Hydraulikanlage entlüften (D638) und in Betrieb setzen

Zum Öffnen und Schließen der Entlüftungsschraube des Regelventils wird ein Innensechskantschlüssel SW 5 benötigt (nur bei D638).

Vorgehensweise zum Entlüften der Hydraulikanlage:

- Hydraulikanlage gemäß Anweisung des Anlagenherstellers in Betrieb setzen.
- Nach dem Einschalten der Betriebsspannung die Statusanzeige-LEDs «MS» und «NS» entsprechend dem Kapitel 3.7 (ab Seite 18) überprüfen.
- 3. Hydraulikanlage gemäß Anweisung des Anlagenherstellers entlüften.
- 4. Regelventil entlüften (nur bei D638):
 - Druck-Sollwert muss anstehen.
 - Niedriger Versorgungsdruck muss anstehen.
 - Entlüftungsschraube vorsichtig ca. eine Umdrehung öffnen.
 - Abwarten bis keine Luft mehr entweicht bzw. das austretende Hydrauliköl keine Luftblasen mehr enthält.
 - Entlüftungsschraube schließen (Anzugsdrehmoment: 10 Nm).
 - Ausgetretenes Hydrauliköl entfernen.

Dieser Vorgang muss erforderlichenfalls wiederholt werden.

5. Hydraulikanlage auf äußere Leckagen überprüfen.

Hydraulikanlage entlüften (D638) und in Betrieb setzen

8.3 Anschluss an den CAN-Bus

Die Ansteuerung des Regelventils über die Konfigurationssoftware ist nur zulässig, wenn dadurch keine gefahrbringenden Zustände in der Maschinenanlage und in deren Umfeld hervorgerufen werden könnten.

Der Betrieb der Konfigurationssoftware an einem CAN-Bus mit laufender CAN-Kommunikation ist nicht zulässig.

Kann ein gefahrloser Betrieb des Ventils über die Konfigurationssoftware auch mit abgeschalteter CAN-Kommunikation nicht sichergestellt werden, darf das Ventil nur drucklos und in einer direkten Verbindung (Punkt-zu-Punkt) mit der Konfigurationssoftware kommunizieren.

(Zum Herstellen einer direkten Verbindung zwischen Konfigurationssoftware und Ventil ist die CAN-Bus-Leitung vom Ventil abzuziehen und das Ventil direkt mit der CAN-Bus-Schnittstellenkarte des PCs zu verbinden.)

Bei der Erstinbetriebnahme des Regelventils am Feldbus empfehlen wir den Betrieb des Ventils in drucklosem Zustand!

Der hydraulische Anschluss und der elektrische Anschluss des Regelventils muss ordnungsgemäß entsprechend dieser Betriebsanleitung ausgeführt worden sein.

Sicherheitshinweise zum Anschluss an den CAN-Bus

- Jede Modul-Adresse (Node-ID) darf innerhalb eines CAN-Netzwerks nur einmal verwendet werden!
- Die Übertragungsrate muss bei allen CAN-Bus-Teilnehmern innerhalb eines CAN-Netzwerks auf den gleichen Wert eingestellt werden.
- Die Konfigurationssoftware kommuniziert mit dem Ventil über die Standarddienste von CANopen. Das Ventil und die Konfigurationssoftware sollten nicht innerhalb eines CAN-Netzwerks betrieben werden. Stattdessen sollte die Kommunikation zwischen Ventil und Konfigurationssoftware über eine direkte Verbindung (d. h. Punktzu-Punkt) erfolgen.

Soll die Konfigurationssoftware innerhalb eines CAN-Netzwerks betrieben werden, müssen folgende Punkte beachtet werden:

- Der Datenaustausch mit dem Ventil kann gestört werden, wenn gleichzeitig ein anderes Gerät (z. B. eine Steuerung) auf das Ventil zugreift.
- Das Node-Guarding darf nur dann aktiviert werden, wenn kein anderer CAN-Bus-Teilnehmer das Ventil über diesen Dienst überwacht.
- CAN-Telegramme können auch von anderen CAN-Bus-Teilnehmern empfangen werden. Dadurch können nicht vorhersehbare Ereignisse ausgelöst werden!

Voraussetzung für den Anschluss des Regelventils an den CAN-Bus ist die korrekte Verdrahtung gemäß Kapitel 7.2 (ab Seite 37).

Die Werkseinstellung für die Modul-Adresse (Node-ID) des Regelventils ist 127; die Werkseinstellung für die Übertragungsrate ist 500 kBit/s. Soll das Ventil eine andere Modul-Adresse (Node-ID) bekommen, bzw. die Übertragungsrate verändert werden, können diese Einstellungen über die LSS-Dienste (Layer Setting Services) über den CAN-Bus verändert werden.

Mit der Konfigurationssoftware können die Modul-Adresse (Node-ID) und die Übertragungsrate des Regelventils verändert werden.

9 Wartung und Reparatur

Montage, Demontage, elektrischer und hydraulischer Anschluss und Wartung von Regelventilen sowie Störungsbeseitigung bei Regelventilen darf nur durch hierfür ausgebildetes, geschultes und autorisiertes Fachpersonal nach geltenden Vorschriften in spannungsfreiem und drucklosem Zustand und bei ausgeschalteter Maschine erfolgen.

Die Maschine muss hierbei gegen Wiedereinschalten gesichert sein. Geeignete Maßnahmen hierzu sind z. B.:

- Hauptbefehlseinrichtung verschließen und Schlüssel abziehen und/oder
- · Warnschild am Hauptschalter anbringen

Die Regelventile der Baureihen D636 und D638 sind weitestgehend wartungsfrei.

Das Regelventil und die Hydraulikanschlüsse sind lediglich in regelmäßigen Abständen, z.B. einmal pro Tag, auf äußerlich erkennbare Schäden und Mängel, wie z.B. Leckagen, zu überprüfen.

Schäden oder Mängel am Regelventil oder der Maschinenanlage sind sofort der zuständigen Stelle zu melden. Erforderlichenfalls ist die Maschinenanlage sofort stillzulegen und zu sichern.

Der Betrieb von Maschinenanlagen mit undichten Regelventilen oder einem undichten Hydrauliksystem ist gefährlich und unzulässig.

Etwaige Leckagen sind sofort unter Berücksichtigung der Sicherheitshinweise und der Betriebsanleitung zu beheben.

Die Reparatur von Regelventilen der Baureihen D636 und D638 darf nur durch uns oder durch von uns autorisierte Servicestellen erfolgen.

Wartung und Reparatur

9 V	Vartung	und	Reparatur
-----	---------	-----	-----------

Für Ihre Notizen.

10 Störungsbeseitigung

Montage, Demontage, elektrischer und hydraulischer Anschluss und Wartung von Regelventilen sowie Störungsbeseitigung bei Regelventilen darf nur durch hierfür ausgebildetes, geschultes und autorisiertes Fachpersonal nach geltenden Vorschriften in **spannungsfreiem und drucklosem** Zustand und bei **ausgeschalteter Maschine** erfolgen.

Die Maschine muss hierbei gegen Wiedereinschalten gesichert sein. Geeignete Maßnahmen hierzu sind z. B.:

- · Hauptbefehlseinrichtung verschließen und Schlüssel abziehen und/oder
- Warnschild am Hauptschalter anbringen

Störung	Störungsbeseitigung		
Leckage an der Anschluss- fläche des Ventils	Dichtungen an den Anschlüssen A, B, P, T und Y auf Vorhandensein, Beschädigungen und richtigen Sitz prüfen.		
	Prüfen, ob Montageschrauben fest angezogen sind (Anzugsdrehmoment der Schrauben: siehe Tabelle 5, Seite 32).		
Leckage an der Verschluss-	Anschlüsse P und T auf korrekten Anschluss prüfen.		
Schraube des Linearmotors	Max. Druck in den Anschlüssen T bzw. Y überprüfen. Der Rücklaufdruck in T darf 50 bar bei Nichtverwendung des Anschlusses Y nicht überschreiten.		
	Bei Leckage an der Verschluss-Schraube des Linearmotors ist das Regelventil an uns oder eine von uns autorisierte Servicestelle zur Überprüfung einzuschicken.		
Keine hydraulische Reaktion	Hydraulik-Installation überprüfen.		
des Ventils	Prüfen, ob der Hydraulikdruck vorhanden ist.		
	Prüfen, ob die Versorgungsspannung vorhanden ist. Hierzu Statusanzeige-LEDs überprüfen (Statusanzeige-LEDs: siehe Kapitel 3.7, Seite 18).		
	Signale, insbesondere den Freigabe-Eingang, am Steckverbinder prüfen.		
	Status des Ventils über die CAN-Bus-Schnittstelle prüfen. Liegt keine Freigabe vor, kann der Status "DISABLE" nicht überschritten werden.		
	Sollwert analog oder über die CAN-Bus-Schnittstelle vorgeben (je nach Modell).		
	Überprüfen der Konfiguration und Parametrierung.		
	Steckverbinder auf Korrosion prüfen.		
	Ausfall des Sollwertes oder Leitungsbruch?		
Instabilitäten im System;	Äußeren Regelkreis überprüfen, eventuell Regelkreisverstärkung verringern.		
Regelkreis schwingt	Bei Druckregelventilen können die Parameter (P, I, D, etc.) optimiert werden.		

Störung	Störungsbeseitigung	
Kommunikationsprobleme in CAN-Netzwerken	Statusanzeige-LEDs überprüfen (Statusanzeige-LEDs: siehe Kapitel 3.7, Seite 18).	
	Korrekten Abschluss der Leitungen überprüfen.	
	Verdrahtung des CAN-Netzwerks überprüfen (siehe hierzu Kapitel 7.2, ab Seite 37)	
	Modul-Adresse (Node-ID) der CAN-Bus-Teilnehmer überprüfen. (Jede Modul-Adresse (Node-ID) darf innerhalb eines CAN-Netzwerks nur einmal verwendet werden!)	
	Übertragungsrate des Regelventils auf Übereinstimmung mit den Übertragungsraten der anderen CAN-Bus-Teilnehmer überprüfen.	
	CAN-Bus-Diagnose-Werkzeuge ermöglichen eine Beobachtung der Datenverkehrs auf dem CAN-Bus und können somit die Suche nac Störungsursachen erleichtern.	

11 Werkzeuge, Ersatzteile und Zubehör

11.1 Werkzeuge für 6+PE-polige Steckverbinder

Bezeichnung	Teilenummer
Crimp-Zange für Gegenstecker	C21162-001
Positionierer, Werkzeugsatz zu Crimp-Zange für Kontaktgrößen 16 und 20	C21163-001
Einbauwerkzeug für Kontaktgrößen 16 und 20	C21164-001
Ausbauwerkzeug für Kontaktgrößen 16 und 20	C21165-001

Tabelle 12: Werkzeuge für 6+PE-polige Steckverbinder

11.2 Ersatzteile und Zubehör D636/D638

Teilebezeichnung	benötigte Anzahl	Bemerkungen	Teilenummer
O-Ringe für Anschlüsse P, T, A, B	4	ID 9,25 x Ø 1,8 [mm]: HNBR 90 Shore FPM 90 Shore	B97009-013 -42082-013
O-Ring für Anschluss Y	·	ID 7,65 x ∅ 1,8 [mm]: HNBR 90 Shore FPM 90 Shore	B97009-012 -42082-012
		(im Lieferumfang enthalten)	
Staubschutzplatte	1	(im Lieferumfang enthalten)	B46035-001
Gegenstecker für 6+PE-poligen	1	DIN EN 175201-804	B97007-061
Anbaustecker, wasserdicht, IP67		verwendbare Leitung mit min. \varnothing 10 mm, max. \varnothing 12 mm	
		(nicht im Lieferumfang enthalten)	
Staubschutzkappe für CAN-Anbaustecker	1	(nicht im Lieferumfang enthalten)	C55823-001
Inbetriebnahmeleitung für CAN-Bus	1	(nicht im Lieferumfang enthalten)	TD3999-132
Spülplatte für P, A, B, T, X, Y	1	XTAPBY	B46634-002
		(nicht im Lieferumfang enthalten)	
Montageschrauben des Regelventils	4	M 5 x 55 (DIN EN ISO 4762, Güteklasse 10.9, Anzugsdrehmoment: 6,8 Nm)	A03665-050-055
		(nicht im Lieferumfang enthalten)	
Konfigurationssoftware	1	(nicht im Lieferumfang enthalten)	B99104
Betriebsanleitung Baureihe D636/D638	1	(nicht im Lieferumfang enthalten)	B95872-002

Tabelle 13: Ersatzteile und Zubehör zur Baureihe D636/D638

11	Werkzeuge.	Ersatzteile	und Zubehör
----	------------	-------------	-------------

Für Ihre Notizen.

12 Anhang Weiterführende Literatur

12 Anhang

12.1 Weiterführende Literatur

12.1.1 Hydraulik

Findeisen, Dietmar und Findeisen, Franz:

Ölhydraulik; Springer-Verlag

Murrenhoff, Univ.-Prof. Dr.-Ing. Hubertus:

Grundlagen der Fluidtechnik - Teil 1: Hydraulik; Vorlesungsumdruck des IFAS (Institut für fluidtechnische Antriebe und Steuerungen) RWTH Aachen (kann beim IFAS RWTH Aachen bezogen werden; Adresse: siehe Kapitel 12.2, Seite 53)

Murrenhoff, Univ.-Prof. Dr.-Ing. Hubertus:

Servohydraulik; Vorlesungsumdruck des IFAS (Institut für fluidtechnische Antriebe und Steuerungen) RWTH Aachen (kann beim IFAS RWTH Aachen bezogen werden; Adresse: siehe Kapitel 12.2, Seite 53)

Murrenhoff, Univ.-Prof. Dr.-Ing. Hubertus:

Steuerungs- und Schaltungstechnik II; Vorlesungsumdruck des IFAS (Institut für fluidtechnische Antriebe und Steuerungen) RWTH Aachen (kann beim IFAS RWTH Aachen bezogen werden; Adresse: siehe Kapitel 12.2, Seite 53)

Schäfer, Dr. Klaus D.:

Stetighydraulik - Grundlagen, Ventiltechnik, Regelkreise; Die Bibliothek der Technik, Band 215; Verlag Moderne Industrie (kann über uns bezogen werden)

12.1.2 Hydraulik in der Feldbusumgebung

Baldy, M.:

Dezentral geregelte fluidtechnische Antriebe in Feldbusumgebungen, Dissertation RWTH Aachen 1999

Bublitz. Roland:

Geräteprofil Hydraulik - Ein Kommunikationsprofil für intelligente Antriebe, Hydropumpen und Stetigventile, 2. Internationales Fluidtechnisches Kolloquium in Dresden, 16.-17. März 2000

Lenz, Walter:

Developments in High Performance Proportional Valves with CANopen Fieldbus Interface, Proceedings of the Sixth Scandinavian International Conference on Fluid Power, May 26-28 1999

Moog GmbH:

Mit Achsregelventil in eine neue Ära, Fluid 4/99

12.1.3 CAN-Grundlagen

Etschberger, Konrad (Hrsg.):

CAN - Controller-Area-Network - Grundlagen, Protokolle, Bausteine, Anwendungen; Carl Hanser Verlag

Lawrenz, Wolfhard (Hrsg.):

CAN - Controller Area Network - Grundlagen und Praxis; Hüthig Verlag

Weiterführende Literatur: Hydraulik

Weiterführende Literatur: Hydraulik in der Feldbusumgebung

Weiterführende Literatur: CAN-Grundlagen 12 Anhang Weiterführende Literatur

12.1.4 Zitierte Normen

DIN 51524-1, Ausgabe 1985-06:

Druckflüssigkeiten; Hydrauliköle; Hydrauliköle HL; Mindestanforderungen

Weiterführende Literatur: Zitierte Normen

DIN 51524-2, Ausgabe 1985-06:

Druckflüssigkeiten; Hydrauliköle; Hydrauliköle HLP; Mindestanforderungen

DIN 51524-3, Ausgabe 1990-08:

Druckflüssigkeiten; Hydrauliköle; Hydrauliköle HVLP; Mindestanforderungen

DIN EN 982:

Sicherheit von Maschinen - Sicherheitstechnische Anforderungen an fluidtechnische Anlagen und deren Bauteile - Hydraulik

DIN EN 50081-1, Ausgabe 1993-03:

Elektromagnetische Verträglichkeit (EMV); Fachgrundnorm Störaussendung; Teil 1: Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinbetriebe

DIN EN 50081-2, Ausgabe 1994-03:

Elektromagnetische Verträglichkeit (EMV); Fachgrundnorm Störaussendung; Teil 2: Industriebereich

DIN EN 50082-1, Ausgabe 1997-11:

Elektromagnetische Verträglichkeit (EMV); Fachgrundnorm Störfestigkeit; Teil 1: Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinbetriebe

DIN EN 55011, Ausgabe 2000-05:

Industrielle, wissenschaftliche und medizinische Hochfrequenzgeräte (ISM-Geräte) - Funkstörungen - Grenzwerte und Messverfahren

DIN EN 60204:

Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen

DIN EN 60529, Ausgabe 2000-09:

Schutzarten durch Gehäuse (IP-Code)

DIN EN 61000-6-2, Ausgabe 2000-03:

Elektromagnetische Verträglichkeit (EMV); Teil 6-2: Fachgrundnormen: Störfestigkeit; Industriebereich

DIN EN 175201-804, Ausgabe 2000-09:

Bauartspezifikation: Rundsteckverbinder - Runde Kontakte mit 1,6 mm Durchmesser - Schraubkupplung

DIN EN ISO 4762, Ausgabe 1998-02:

Zylinderschrauben mit Innensechskant

DIN EN ISO 12100:

Sicherheit von Maschinen - Grundbegriffe, allgemeine Gestaltungsleitsätze

DIN ISO 11898, Ausgabe 1995-08:

Straßenfahrzeuge - Austausch digitaler Informationen - Steuergerätenetz (CAN) für schnellen Datenaustausch

ISO 4401, Ausgabe 1994-12:

Fluidtechnik, Hydraulik - 4-Wege-Hydroventile - Befestigungsflächen

ISO 4406, Ausgabe 1999-12:

Fluidtechnik - Hydraulik-Druckflüssigkeiten - Zahlenschlüssel für den Grad der Verschmutzung durch feste Partikel

NAS 1638, Edition 1992:

Cleanliness Requirements of Parts Used in Hydraulic Systems

12 Anhang Adressen

Adresse: CiA

Adresse: IFAS RWTH

12.2 Adressen

CAN in Automation (CiA) e. V.

Am Weichselgarten 26

91058 Erlangen (Germany)

Tel.: +49 9131 601091 Fax: +49 9131 601092 http://www.can-cia.de

VDMA Adresse: VDMA

Fachverband Fluidtechnik

Lyoner Straße 18

60528 Frankfurt/Main (Germany)

Tel.: +49 69 6603 1332 Fax: +49 69 6603 1459 E-Mail: fluid@vdma.org http://www.vdma.org

Institut für fluidtechnische Antriebe und Steuerungen (IFAS) der RWTH Aachen

Steinbachstraße 53

52074 Aachen (Germany)

Tel.: +49 241 807511 Fax: +49 241 8888194

E-Mail: post@ifas.rwth-aachen.de http://www.rwth-aachen.de/ifas/

12 Anhang Adressen

Für Ihre Notizen.

13 Stichwortverzeichnis A...C

13 Stichwortverzeichnis

3 (Formelzeichen für Filterfeinheit)	Arbeitsweise des Ventils7
Δp (Formelzeichen für den Druckabfall)10	Ausgänge
Δp _N (Formelzeichen für Nenndruckabfall)10	analoge Ausgänge
v (Formelzeichen für Viskosität)	Abbildung "Schaltung zur Messung des
uP	Istwertes I _{out} "
als Abkürzung für Mikroprozessor3	Auswertung der analogen Istwertausgänge
in der Prinzipdarstellung des Ventils8	in der Prinzipdarstellung des Ventils
	Istwertausgänge (analog)
2-Wege-Funktion23	Druck-Istwertausgang 4–20 mA (D638) 17, 24
2x2-Wege-Funktion23	Volumenstrom-Istwertausgang 4–20 mA 17, 24
3-Wege-Funktion23	digitale Ausgänge
4-Wege-Funktion23	in der Prinzipdarstellung des Ventils
	Auswertung der analogen Istwertausgänge
A	В
Abbildung	В
2-Wege-/2x2-Wege-Funktion (Hydrauliksymbole) 23	Befestigungsschrauben,
2-Wege-Funktion (Hydrauliksymbol)23	siehe Montageschrauben des Regelventils
4-Wege-/3-Wege-Funktion federzentriert	Befüllen der Hydraulikanlage42
(Hydrauliksymbole)23	Bestimmungsgemäße Verwendung des Regelventils 1
Aufbau zur Messung der Druck-Signal-Kennlinie	Betätigung des Regelventils: direkt mit Linearmotor
bei Druckregelventilen (D638)26	Betrieb in explosionsgefährdeter Umgebung
bei lagegeregelten Ventilen	ist nicht zulässig!
Aufbau zur Messung der	Betriebsanleitung, Verwendung
	Betriebsarten des Regelventils
Volumenstrom-Signal-Kennlinie	p-Funktion, siehe Druckfunktion
Druck-Signal-Kennlinie des Druckregelventils (D638) 26	pQ-Funktion, siehe Volumenstrom- und Druckfunktion
Druck-Signal-Kennlinie des lagegeregelten Ventils 26	Q-Funktion, siehe Volumenstromfunktion
Einbauzeichnung	Betriebsdruck, siehe Druck
Frequenzgang	Bus-Schnittstelle, siehe CAN-Bus: CAN-Bus-Schnittstelle
Lochbild	Dus-ochinitistene, siene OAN-Dus. OAN-Dus-ochinitistene
Prinzipdarstellung des direktbetätigten Regelventils 8	
Prinzipdarstellung des Linearmotors8	
Schaltung zur Messung des Istwertes I _{out}	
Sprungantwort25	С
Statusanzeige-LEDs	_
Steckerbelegung des 6+PE-poligen Anbausteckers 36	CAN (Abkürzung für Controller Area Network)
Steckerbelegung des CAN-Anbausteckers37	CAN-Anbaustecker,
Verdrahtungsbeispiel CAN-Netzwerk38	siehe Steckverbinder: CAN-Anbaustecker
Volumenstromdiagramm	CAN-Bus10
Volumenstrom-Signal-Kennlinie	CAN-Bus-Schnittstelle
Volumenstrom-Signal-Kennlinie (Nullschnitt)26	Spannungsfestigkeit: 40 VDC25
Abkürzungen, verwendete3	technische Daten
Abmessungen27	CAN-Netzwerke
Absicherung, externe A. pro Regelventil: 1,6 A träge 25	Leitungslängen (Empfehlung für maximale L.) 39
Adressen	Leitungsquerschnitte
CiA53	Leitungstypen (geeignet für Verdrahtung)40
IFAS RWTH53	Stichleitungslänge
VDMA53	maximal zulässige in CAN-Netzwerken 40
Analoge Ausgänge, siehe Ausgänge	Übertragungsraten39
Analoge Eingänge, siehe Eingänge	CANopen-Kommunikationsprofil
Analoge Istwertausgänge, siehe Ausgänge	(CiA-Standard DS 301)11, 25
Analoge Sollwerteingänge, siehe Eingänge	Datenaustausch mit dem Ventil
Anbaustecker, siehe Steckverbinder: Anbaustecker	Diagnose11
Anker (in der Prinzipdarstellung des Linearmotors)8	Fehlererkennung11
Anschluss des Regelventils	Geräteklassen
Anschluss an den CAN-Bus44	Geräteprofil (CiA-Standard DSP 408)
Anschluss an die Systemhydraulik32	
elektrischer Anschluss	Inbetriebnahmeleitung für CAN-Bus,
Anschlussbohrungen	Teilenummer für Bestellung: TD3999-132
Bohrungsdurchmesser: 7,9 mm22	Leitungslängen (Empfehlung für maximale
	Leitungslängen in CAN-Netzwerken)
in der Prinzipdarstellung des Ventils	Leitungsquerschnitte in CAN-Netzwerken
Soll-Druck in A als Eingangssignal	Leitungstypen (geeignet für CAN-Netzwerke) 40
für die Ventilelektronik9	Modul-Adresse (Node-ID) des Ventils
Anzugsdrehmoment	über die LSS-Dienste ändern44
für Entlüftungsschraube des Regelventils: 10 Nm 43	Stichleitungslänge
für Montageschrauben des Regelventils	maximal zulässige in CAN-Netzwerken40
Güteklasse 10.9: 6,8 Nm 32	Übertragungsrate d. Ventils über LSS-Dienste ändern 44
Güteklasse 12 9: 10 Nm 32	

13 Stichwortverzeichnis D...E

CAN-Bus	Druckfunktion
Übertragungsraten in CAN-Netzwerken39	Regelung des Drucks in der Anschlussbohrung A9
Überwachung11	Sollwertsignal
Verdrahtung von CAN-Netzwerken	Druck-Signal-Kennlinie,
geeignete Leitungstypen40	siehe Kennlinien: Druck-Signal-Kennlinie
Abbildung "Verdrahtungsbeispiel CAN-Netzwerk" 38	DS
Weiterführende Literatur	als Abkürzung für <u>D</u> raft <u>S</u> tandard
CAN-Grundlagen51	DS 301 (CiA-Standard),
	siehe CiA: CiA-Standard DS 301
Hydraulik in der Feldbusumgebung51	
Werkseinstellung der Modul-Adresse (Node-ID)	DSP
des Ventils: Node-ID=12744	als Abkürzung für <u>d</u> igitaler <u>S</u> ignal <u>p</u> rozessor
Werkseinstellung der Übertragungsrate	als Abkürzung für <u>D</u> raft <u>S</u> tandard <u>P</u> roposal
des Ventils: 500 kBit/s44	DSP 408 (CiA-Standard),
CAN-Bus-Schnittstelle,	siehe CiA: CiA-Standard DSP 408
siehe CAN-Bus: CAN-Bus-Schnittstelle	in der Prinzipdarstellung des Ventils
CAN-Netzwerke, siehe CAN-Bus: CAN-Netzwerke	Durchfluss, siehe Volumenstrom
CIA	Burdinass, siene volumenstom
Adresse 53	
als Abkürzung für <u>C</u> AN <u>i</u> n <u>A</u> utomation3	
CiA-Standard DS 30111, 25	E
CiA-Standard DSP 4087, 11, 25	E
Codierstift27	Einbauzeichnung27
	Eingänge
	analoge Eingänge
_	analoge Sollwerteingänge24
D	in der Prinzipdarstellung des Ventils
DD1//411.00	Sollwerteingänge (analog)11
DDV (Abkürzung für <u>D</u> irect <u>D</u> rive <u>V</u> alve)	Druck-Sollwerteingang
direktbetätigtes Regelventil3	0–10 mA massebezogen (D638) 15, 24
Demontage des Regelventils	0–10 mA potenzialfrei (D638) 15, 24
benötigtes Zubehör: Innensechskantschlüssel SW 4 33	0–10 V potenzialfrei (D638) 14, 24
Vorgehensweise	4–20 mA massebezogen (D638) 16, 24
Device Profile Fluid Power Technology,	4–20 mA potenzialfrei (D638) 16, 24
siehe CAN-Bus: Geräteprofil	lieferbare analoge Sollwerteingänge11
Diagnose über CAN-Bus11	Volumenatram Callwortaingang
	Volumenstrom-Sollwerteingang
Dichtungen, verwendbare Werkstoffe21	±10 mA massebezogen
Digitale Ausgänge, siehe Ausgänge	±10 mA potenzialfrei
Digitale Eingänge, siehe Eingänge	±10 V potenzialfrei 12, 24
Digitaler Signalprozessor (DSP)	4–20 mA massebezogen 14, 24
in der Prinzipdarstellung des Ventils8	4–20 mA potenzialfrei 13, 24
DIN (Abkürzung für <u>D</u> eutsches <u>I</u> nstitut für <u>N</u> ormung e. V.) 3	digitale Eingänge18
Druck	Freigabe-Eingang18
Druckabfall Δp10	in der Prinzipdarstellung des Ventils
	Einschaltdauer: 100 %
Druckflüssigkeit, siehe Hydraulikflüssigkeit	
Druck-Istwertausgang (analog) 4–20 mA (D638) 17, 24	Elektrische Daten
Drucksensor	Elektrischer Anschluss des Regelventils
in der Prinzipdarstellung des Ventils8	Elektromagnetische Verträglichkeit (EMV), siehe EMV
zur Bestimmung des Druckes in der	EMV
Anschlussbohrung A9	als Abkürzung für <u>E</u> lektro <u>m</u> agnetische <u>V</u> erträglichkeit 3
zur Übermittlung des Druckes in der	EMV-Normen
Anschlussbohrung A an die Ventilelektronik 9	DIN EN 50081-1
Druck-Signal-Kennlinie,	DIN EN 50081-2
siehe Kennlinien: Druck-Signal-Kennlinie	DIN EN 50082-1
Druck-Sollwerteingang (analog)	DIN EN 55011
	DIN EN 61000-6-2 2. 24
0–10 mA massebezogen (D638)	· · · · · · · · · · · · · · · · · · ·
0–10 mA potenzialfrei (D638)15, 24	EMV-Fachgrundnormen, siehe EMV-Normen:
0–10 V potenzialfrei (D638)14, 24	DIN EN 50081-1, DIN EN 50081-2, DIN EN
4–20 mA massebezogen (D638)16, 24	50082-1 und DIN EN 61000-6-2
4–20 mA potenzialfrei (D638)16, 24	EMV-Schutzanforderungen2, 24
Formelzeichen: p	EN (Abkürzung für <u>E</u> uropa- <u>N</u> orm)
Ventilelektronik	Enable-Eingang,
Soll-Druck in der Anschlussbohrung A als	siehe Eingänge: digitale Eingänge: Freigabe-Eingang
Eingangssignal9	Entlüften des Regelventils
	5
zur Ansteuerung des Linearmotors9	benötigtes Zubehör: Innensechskantschlüssel SW 5 43
zulässiger Druck im Anschluss A	Vorgehensweise
bei D636: 350 bar21	Entlüftungsschraube
bei D638:	Anzugsdrehmoment: 10 Nm 43
abhängig vom Drucksensor, max. 350 bar 21	in der Prinzipdarstellung des Ventils
zulässiger Druck im Anschluss T (mit Y): 350 bar 21	zum Entlüften des Regelventils43
zulässiger Druck im Anschluss T (ohne Y): 50 bar 21	Ersatzteile zu den Baureihen D636/D63849
zulässiger Druck im Anschluss Y: drucklos zum Tank 21	Explosionsgefährdete Umgebung
zulässiger Druck im Anschlüssen P und B: 350 bar 21	(Betrieb ist hier nicht zulässig!)
	Externe Absicherung pro Regelventil: 1,6 A träge
Druckaufnehmer, siehe Druck: Drucksensor	Externe Absorberung pro Negerventil. 1,0 A trage

13 Stichwortverzeichnis F...L

Γ		ĸ	
Fehler		Kennlinien	
behebbarer Fehler (Modul-Status-LED «MS» blinkt ro	t) 18	Druck-Signal-Kennlinie	
Fehlerbeseitigung, siehe Störungsbeseitigung	.,	Aufbau zur Messung bei Druckregelventilen (D638)26
Fehlererkennung über CAN-Bus	11	Aufbau zur Messung bei lagegeregelten Ventilen	
schwerwiegender Fehler		Druckregelventil (D638)	
(Modul-Status-LED «MS» leuchtet rot	18	lagegeregeltes Ventil	
schwerwiegender Fehler bei der Netzwerkkommuni-		Frequenzgang	
kation (Netzwerk-Status-LED «NS» leuchtet rot)	19	Sprungantwort	
Feldbus-Modul (in der Prinzipdarstellung des Ventils)	8	Volumenstromdiagramm	. 25
Filterfeinheit		Volumenstrom-Signal-Kennlinie	. 26
Filterfeinheit, siehe Systemfilter: Filterfeinheit		Aufbau zur Messung	
Formelzeichen: β _x	3	Volumenstrom-Signal-Kennlinie (Nullschnitt)	
Fluid Power Technology, Device Profile,		Kommunikationsprofil,	
siehe CAN-Bus: Geräteprofil		siehe CAN-Bus: CANopen-Kommunikationsprofil	
FPM (Material von O-Ringen)	3	Konfigurationssoftware10	, 42
Freigabe-Eingang,		Teilenummer für Bestellung: B99104	
siehe Eingänge: digitale Eingänge: Freigabe-Eingang			
Frequenzgang, siehe Kennlinien: Frequenzgang			
Funkstörung von elektrischen Betriebsmitteln,			
siehe EMV-Normen: DIN EN 55011			
Funktion des Ventils	7	L	
		Lager (in der Prinzipdarstellung des Linearmotors)	8
		Lagerung (nur mit montierter Staubschutzplatte!)	
		Leckölanschluss Y	
G		Leckvolumenstrom	
G		LED	
Geräteklassen, siehe CAN-Bus: Geräteklassen		Abbildung "Statusanzeige-LEDs"	. 18
Geräteprofil für Stetigventile, siehe CAN-Bus: Geräteprofil		als Abkürzung für Light Emitting Diode (Leuchtdiode)	3
Gewährleistung		in der Prinzipdarstellung des Ventils	
GND (Abkürzung für Ground (Signalmasse))		Statusanzeige-LEDs	. 18
(1 1 1 3 1 <u>2</u> 11 <u>2 (1 3 1 1 1 1 1 1) </u>		Modul-Status-LED «MS»	. 18
		Netzwerk-Status-LED «NS»	. 19
		Leistungsaufnahme	
11		P _{max} (bei max. Volumenstrom):	
Н		28,8 W (1,2 A bei 24 VDC)	. 24
Haftung	A 2	P _{min} (Motor in Ruhestellung):	
Hydraulikanlage	, _	9,6 W (0,4 A bei 24 VDC)	. 24
befüllen und spülen	42	Leitungslängen in CAN-Netzwerken	
entlüften		(Empfehlung für maximale Leitungsleitungen)	
in Betrieb setzen		Leitungsquerschnitte in CAN-Netzwerken	. 39
Hydraulikflüssigkeit		Leitungstypen (geeignet für CAN-Netzwerke)	. 40
Sauberkeitsklasse		Leuchtdioden (LEDs), siehe LED	
empfohlene Sauberkeitsklasse (ISO 4406)		Lieferumfang	
für Funktionssicherheit: < 15/12	21	Linearität der Druckfunktion (nur bei D638): < 0,5 %	
für Lebensdauer (Verschleiß): < 15/12	21	Linearmotor	
Viskosität		Ansteuerung durch Ventilelektronik	
empfohlene Viskosität: 15-100 mm²/s	21	Bestandteile	
zulässige Viskosität: 5-400 mm²/s	21	in der Prinzipdarstellung des Ventils	8
zulässige Flüssigkeiten	21	Prinzipdarstellung	8
zulässiger Temperaturbereich: -20°C bis 80°C	21	Literatur, weiterführende Literatur	
Hydrauliköl, siehe Hydraulikflüssigkeit		CAN-Grundlagen	
Hydrauliksymbole		Hydraulik	
2-Wege-Funktion		Hydraulik in der Feldbusumgebung	
2x2-Wege-Funktion		zitierte NormenLochbild	
3-Wege-Funktion		LSS	21
4-Wege-Funktion		als Abkürzung für <u>L</u> ayer <u>S</u> etting <u>S</u> ervices	3
Hysterese	22	Modul-Adresse (Node-ID) des Ventils	5
		über LSS-Dienste ändern	11
		Übertragungsrate des Ventils	
		über LSS-Dienste ändern	44
		LVDT	
• 		als Abkürzung für <u>L</u> inear <u>V</u> ariable <u>D</u> ifferential	
ID	_	<u>Transformer (Wegaufnehmer)</u>	3
als Abkürzung für <u>Id</u> entifier	3	in der Prinzipdarstellung des Ventils	
als Abkürzung für <u>I</u> nner <u>D</u> iameter	_	zur Bestimmung der Steuerkolbenposition	
(Innendurchmesser, z. B. bei O-Ringen)		zur Übermittlung der Steuerkolbenposition	5
Inbetriebnahme des Regelventils	42	an die Ventilelektronik	9
Inbetriebnahmeleitung für CAN-Bus			•
Teilenummer für Bestellung: TD3999-132			
Industriebereiche, Betrieb in	1		
ISO (Abkürzung für	0		
International Organization for Standardization)	პ		
Istwertausgänge, siehe Ausgänge			

13 Stichwortverzeichnis M...S

	P
Masse des Regelventils: 2,5 kg22	p (Formelzeichen für Druck)
Materialien: verwendbare Materialien für O-Ringe21	PC (Abkürzung für Personal Computer)
Mikroprozessor (μP), siehe μP	PE (Abkürzung für Schutzerde (Protective Earth))
Modul-Adresse (Node-ID)	Permanentmagnete
Modul-Adresse des Ventils	(in der Prinzipdarstellung des Linearmotors)
über die LSS-Dienste ändern	Permanentmagnet-Linearmotor, siehe Linearmotor
Werkseinstellung für das Ventil: Node-ID=127	p-Funktion, siehe Druckfunktion
Modul-Status-LED «MS»18 Montage des Regelventils	pQ-Funktion, siehe Volumenstrom- und Druckfunktion
benötigtes Zubehör: Innensechskantschlüssel SW 4 32	Prinzipdarstellung direktbetätigtes Regelventil8
Montagefläche für Ventil	Linearmotor8
Ebenheit: < 0,01 mm auf 100 mm	Problembeseitigung, siehe Störungsbeseitigung
mittlere Rauhtiefe R _a : < 0,8 µm	Pulsweitenmodulation (PWM), siehe PWM
Montagemöglichkeit	PWM
Vorgehensweise32	als Abkürzung für Pulsweitenmodulation
Montageschrauben des Regelventils	in der Prinzipdarstellung des Ventils8
Anzugsdrehmoment32	·
Teilenummer für Bestellung: A03665-050-05549	
zur Befestigung des Ventils32	
MS, siehe Modul-Status-LED «MS»	^
	Q
	Q (Formelzeichen für Volumenstrom)
	Q-Funktion, siehe Volumenstromfunktion
N	Q _N (Formelzeichen für Nennvolumenstrom)10
14	
NAS (Abkürzung für <u>N</u> ational <u>A</u> merican <u>S</u> tandard)3	
Nenndruckabfall ∆p _N 10	
Nennvolumenstrom	R
Q_N in der Formel zur Berechnung des Volumenstroms . 10	N
Netzwerkkommunikation	Reparatur45
Statusanzeige über Netzwerk-Status-LED «NS» 19	Rückstellfedern
Netzwerk-Status-LED «NS»	in der Prinzipdarstellung des Linearmotors
Node-ID, siehe Modul-Adresse	in der Prinzipdarstellung des Ventils8
Normalbetrieb des Ventils	Rüttelfestigkeit: 30g, 3 Achsen, Frequenz: 5–2000 Hz 21
(Modul-Status-LED «MS» leuchtet grün)	
Normen 24 52	
DIN 5152421, 52	
DIN EN 175201-80424, 49, 52	S
DIN EN 50081-1	3
DIN EN 50082-1	Sauberkeitsklasse der Hydraulikflüssigkeit
DIN EN 55011	empfohlen für Funktionssicherheit:
DIN EN 60204	ISO 4406 < 15/1221
DIN EN 60529	empfohlen für Lebensdauer (Verschleiß):
DIN EN 61000-6-2	ISO 4406 < 15/1221
DIN EN 982	Schnittbild, siehe Prinzipdarstellung
DIN EN ISO 4762	Schnittstelle, siehe CAN-Bus: CAN-Bus-Schnittstelle
DIN FN ISO 12100 5 52	Schnittzeichnung, siehe Prinzipdarstellung
DIN EN ISO 12100	Schutzart des Regelventils
DIN ISO 1189825, 38, 52	Schutzart des Regelventils IP65 (ohne Steckverbinder)24
DIN ISO 11898	Schutzart des Regelventils
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52	Schutzart des Regelventils IP65 (ohne Steckverbinder)24
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS»	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung Nullverschiebung: < 1,5 % (bei ΔT = 55 K)	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung Nullverschiebung: < 1,5 % (bei ΔT = 55 K)	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung Nullverschiebung: < 1,5 % (bei ΔT = 55 K)	Schutzart des Regelventils IP65 (ohne Steckverbinder)
DIN ISO 11898	Schutzart des Regelventils IP65 (ohne Steckverbinder) 24 IP67 (Steckverbinder gesteckt und verriegelt) 24 Schutzerde (Abkürzung: PE) 3 Selbsttest der Ventilelektronik (nach dem Einschalten der Spannungsversorgung) 18 Sicherheitshinweise 5 Anschluss an den CAN-Bus 43 Anschluss an die Systemhydraulik 31 Befüllen der Hydraulikanlage 42 Demontage 31, 33 elektrischer Anschluss 35 Inbetriebnahme des Regelventils 41 Lagerung 29 Montage 31 Reparatur 45 Spülen der Hydraulikanlage 42 Transport 29
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung Nullverschiebung: < 1,5 % (bei ΔT = 55 K)	Schutzart des Regelventils 1P65 (ohne Steckverbinder) 24 IP67 (Steckverbinder gesteckt und verriegelt) 24 Schutzerde (Abkürzung: PE) 3 Selbsttest der Ventilelektronik (nach dem Einschalten der Spannungsversorgung) 18 Sicherheitshinweise 5 Anschluss an den CAN-Bus 43 Anschluss an die Systemhydraulik 31 Befüllen der Hydraulikanlage 42 Demontage 31, 33 elektrischer Anschluss 35 Inbetriebnahme des Regelventils 41 Lagerung 29 Montage 31 Reparatur 45 Spülen der Hydraulikanlage 42 Transport 29 Wartung 45
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung Nullverschiebung: < 1,5 % (bei ΔT = 55 K)	Schutzart des Regelventils 1P65 (ohne Steckverbinder) 24 IP67 (Steckverbinder gesteckt und verriegelt) 24 Schutzerde (Abkürzung: PE) 3 Selbsttest der Ventilelektronik (nach dem Einschalten der Spannungsversorgung) 18 Sicherheitshinweise 5 Anschluss an den CAN-Bus 43 Anschluss an die Systemhydraulik 31 Befüllen der Hydraulikanlage 42 Demontage 31, 33 elektrischer Anschluss 35 Inbetriebnahme des Regelventils 41 Lagerung 29 Montage 31 Reparatur 45 Spülen der Hydraulikanlage 42 Transport 29 Wartung 45 Signalmasse: Abkürzung: GND 3
DIN ISO 11898 25, 38, 52 EMV-Normen 2, 5, 52 ISO 4401 22, 27, 52 ISO 4406 21, 42, 52 NAS 1638 42, 52 Übersicht über zitierte Normen 52 NS, siehe Netzwerk-Status-LED «NS» Nullüberdeckung, siehe Überdeckung Nullverschiebung: < 1,5 % (bei ΔT = 55 K)	Schutzart des Regelventils 1P65 (ohne Steckverbinder) 24 IP67 (Steckverbinder gesteckt und verriegelt) 24 Schutzerde (Abkürzung: PE) 3 Selbsttest der Ventilelektronik (nach dem Einschalten der Spannungsversorgung) 18 Sicherheitshinweise 5 Anschluss an den CAN-Bus 43 Anschluss an die Systemhydraulik 31 Befüllen der Hydraulikanlage 42 Demontage 31, 33 elektrischer Anschluss 35 Inbetriebnahme des Regelventils 41 Lagerung 29 Montage 31 Reparatur 45 Spülen der Hydraulikanlage 42 Transport 29 Wartung 45

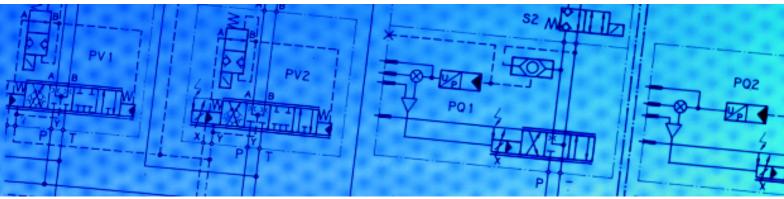
13 Stichwortverzeichnis T...U

Sollwertsignal	Т
Soll-Druck in der Anschlussbohrung A	•
(bei der Druckfunktion)	Tabelle
Soll-Position des Steuerkolbens (bei der Volumenstromfunktion)9	Empfehlung für maximale Leitungslängen
Spannungsfestigkeit der CAN-Bus-Schnittstelle: 40 VDC25	in CAN-Netzwerken in Abhängigkeit vom Leitungsquerschnitt und der Anzahl
Spannungsversorgung, siehe Versorgungsspannung	der CAN-Bus-Teilnehmer39
Sprungantwort, siehe Kennlinien: Sprungantwort	in CAN-Netzwerken in Abhängigkeit von der
Spule (in der Prinzipdarstellung des Linearmotors)	Übertragungsrate39
Spülen der Hydraulikanlage42	Ersatzteile und Zubehör zur Baureihe D636/D638 49
Spülplatten	Geeignete Leitungstypen für CAN-Netzwerke 40
Teilenummer für Bestellung: B46634-00249	Lieferbare analoge Sollwerteingänge11
Verwendung zum Spülen der P- und T-Leitungen 42	Maße zum Lochbild27
Stand-by-Modus des Ventils (Modul Status LED (MS), blinkt grün)	Maximal zulässige Stichleitungslängen
(Modul-Status-LED «MS» blinkt grün)	in CAN-Netzwerken
Status-LEDs, siehe LEDs	Montagematerial und Anzugsdrehmomente
Staubschutzkappe für CAN-Anbaustecker	Steckerbelegung des CAN-Anbausteckers
Teilenummer für Bestellung: C55823-001	Werkzeuge für 6+PE-polige Steckverbinder
Staubschutzplatte	Zustände der Modul-Status-LED «MS»
muss montiert sein für Transport und Lagerung! 6, 29	Zustände der Netzwerk-Status-LED «NS»
Teilenummer für Nachbestellung: B46035-00149	Technische Daten
Steckerbelegung	allgemeine technische Daten
6+PE-poliger Anbaustecker	elektrische Daten
CAN-Anbausteckers37 Steckverbinder	hydraulische Daten
Anbaustecker (6+PE-polig)	Teilenummern Betriebsanleitung D636/D638: B95872-002A, 49
Gegenstecker	Gegenstecker für 6+PE-poligen Anbaustecker:
Teilenummer für Bestellung: B97007-061 49	B97007-061
gemäß DIN EN 175201-80424	Inbetriebnahmeleitung für CAN-Bus: TD3999-132 49
in der Prinzipdarstellung des Ventils8	Konfigurationssoftware: B9910449
Steckerbelegung36	Montageschrauben des Regelventils:
technische Daten des Anbausteckers24	A03665-050-05549
CAN-Anbaustecker	O-Ring für den Anschluss Y:
in der Prinzipdarstellung des Ventils8	FPM 90 Shore: 45082-012
Staubschutzkappe Teilenummer für Bestellung: C55823-00149	HNBR 90 Shore: 45082-01249 O-Ringe für die Anschlüsse P, T, A, B
Steckerbelegung	FPM 90 Shore: 45082-01349
technische Daten25	HNBR 90 Shore: 45122-01349
Werkzeuge für 6+PE-polige Steckverbinder49	Spülplatte für P, A, B, T, X, Y: B46634-00249
Stellzeit für 0 bis 100 % Hub: 12 ms	Staubschutzkappe für CAN-Anbaustecker:
Steuerbuchse (in der Prinzipdarstellung des Ventils)8 Steuerkante	C55823-001
Steuerkolben	Staubschutzplatte: B46035-00149 Temperatur, zulässige
Abbildung "Schaltung zur Messung des Istwertes I _{out} " 17	Hydraulikflüssigkeit: -20°C bis 80°C21
in der Prinzipdarstellung des Ventils8	Umgebungstemperatur: -20°C bis 60°C21
Soll-Position als Eingangssignal für die Ventilelektronik 9	Totband-Kompensation: Ausführung durch Ventilelektronik 11
Steuerölversorgung des Regelventils: keine erforderlich 22	Transport
Stichleitungslänge (max. zulässige in CAN-Netzwerken) 40	Transportschäden
Störaussendung im Industriebereich,	Transportverpackung
siehe EMV-Normen: DIN EN 50081-2	Troubleshooting, siehe Störungsbeseitigung
im Wohnbereich, Geschäfts- und Gewerbebereich sowie	Troubleshooting, siene otorungsbeschigung
Kleinbetrieb, siehe EMV-Normen: DIN EN 50081-1	
Störfestigkeit	
im Industriebereich,	U
siehe EMV-Normen: DIN EN 61000-6-2	U
im Wohnbereich, Geschäfts- und Gewerbebereich sowie	Überdeckung: Nullüberdeckung, < 3 % oder
Kleinbetrieb, siehe EMV-Normen: DIN EN 50082-1	10 % positive Überdeckung22
Störungsbeseitigung	Übertragungsrate
keine hydraulische Reaktion des Ventils47	Übertragungsraten in CAN-Netzwerken
Kommunikationsprobleme in CAN-Netzwerken	Werkseinstellung für die Kommunikation über den CAN-Bus: 500 kBit/s44
Leckage an der Anschlussfläche des Ventils47	Überwachung über CAN-Bus11
Leckage an Verschluss-Schraube des Linearmotors 47	Umgebungsbedingungen, zulässige
Regelkreis schwingt	Rüttelfestigkeit: 30g, 3 Achsen, Frequenz: 5–2000 Hz 21
Stoßfestigkeit: 60g, 6 Richtungen, Halbsinus 11 ms	Stoßfestigkeit: 60g, 6 Richtungen, Halbsinus 11ms 21
SW (Abkürzung f. Schlüsselweite bei Schraubenschlüsseln) 3	Umgebungstemperatur: -20°C bis 60°C21
Symbole, verwendete	Umgebungstemperatur
Filterfeinheit	zulässige Temperatur: -20°C bis 60°C
empfohlen für Funktionssicherheit:	Umkehrspanne: < 0,1 %
. β ₁₀ ≥ 75 (10 μm absolut)21	
empfohlen für Lebensdauer (Verschleiß):	
$\beta_6 \ge 75$ (6 µm absolut)21	

13 Stichwortverzeichnis V...Z

١	/
1	,

VDMA	
Adresse	53
als Abkürzung für den Verband deutscher	
Maschinen- und Anlagenbau e. V	
Ventilbauart: einstufiges Schieberventil mit Steuerbuchse	22
Ventilelektronik	
Ausführung geräte- und antriebsspezifischer	4.4
Funktionen Ausführung von Sollwertrampen	
Ausführung von Totband-Kompensation	
Selbsttest nach dem Einschalten der	
Spannungsversorgung	18
Soll-Position des Steuerkolbens als Eingangssignal	9
zur Ansteuerung des Linearmotors	9
Verpackung	29
Verschluss-Schraube	
(in der Prinzipdarstellung des Linearmotors)	8
Versorgungsspannung	
Ausfall der Versorgungsspannung	. 40
(Statusanzeige-LEDs sind aus)	5, 19
Einschalten der Spannungsversorgung	18
Versorgungsspannung:	10
nominal 24 VDC, 18 bis 32 VDC	24
Verträglichkeit, elektromagnetische (EMV), siehe EMV	
Verwendung	
bestimmungsgemäße Verwendung des Regelventils	1
der Betriebsanleitung	1
Viskosität	
empfohlene Viskosität für Hydraulikflüssigkeit:	0.4
15-100 mm²/s	
Formelzeichen: vzulässige Viskosität für Hydraulikflüssigkeit:	3
5-400 mm²/s	21
Volumenstrom	∠ 1
Formel zur Berechnung des Volumenstroms Q	
bei der Volumenstromfunktion	10
Formelzeichen: Q	
maximaler Volumenstrom: 75 l/min	22
Volumenstromdiagramm,	
siehe Kennlinien: Volumenstromdiagramm	
Volumenstrom-Istwertausgang (analog) 4–20 mA 17	7, 24
Volumenstrom-Signal-Kennlinie,	
siehe Kennlinien: Volumenstrom-Signal-Kennlinie Volumenstrom-Sollwerteingang (analog)	!
±10 mA massebezogen13	3 24
±10 mA potenzialfrei	2 24
±10 V potenzialfrei	2. 24
4–20 mA massebezogen14	
4–20 mA potenzialfrei13	
Volumenstrom- und Druckfunktion	
(optional bei D638)	10
Volumenstromdiagramm,	
siehe Kennlinien: Volumenstromdiagramm	
Volumenstromfunktion	
Einflussgrößen Druckabfall ∆p an den einzelnen Steuerkanten	10
Position des Steuerkolbens	10
Formel zur Berechnung des Volumenstroms Q	
Regelung der Position des Steuerkolbens	
Sollwertsignal	
Volumenstrom- und Druckfunktion	
(optional bei D638)	10
Volumenstrom-Signal-Kennlinie,	
siehe Kennlinien: Volumenstrom-Signal-Kennlinie	
Volumenstromverstärkung	26
Vorteile der Regelventile D636/D638	/


W

Warenzeichen		. F
Wartung		45
Wegaufnehmer (LVDT)		
in der Prinzipdarstellung des Ventils		. 8
Wege-Funktion		
2-Wege-Funktion	22, 2	23
2x2-Wege-Funktion		
3-Wege-Funktion		
4-Wege-Funktion		
Hydrauliksymbole	,	
2-Wege-Funktion		23
2x2-Wege-Funktion		
3-Wege-Funktion		
4-Wege-Funktion		
Werkstoffe: verwendbare Werkstoffe für O-Ringe		
Werkzeuge für 6+PE-polige Steckverbinder		
Z		
4		
Zubehör zu den Baureihen D636/D638	2	49

Argentinien
Australien
Brasilien
China
Deutschland
Finnland
Frankreich
Großbritannien
Indien
Irland

Italien
Japan
Korea
Luxemburg
Norwegen
Österreich
Philippinen
Russland
Schweden
Singapur
Spanien
Südafrika
USA

MOOG

Moog GmbH Hanns-Klemm-Straße 28 71034 Böblingen (Germany) Telefon: +49 7031 622-0 Telefax: +49 7031 622-191 Unsere Standorte: www.moog.com/worldwide