Operating Instructions

D636/D638 Series
Direct Drive Servo-Proportional Valves with Integrated Digital Electronics and CAN Bus Interface
Exclusion of Liability

These operating instructions were prepared with the greatest possible care and the contents generated according to the best of the authors' knowledge. However, the possibility of error cannot be prevented and improvements may be possible. We would be pleased to receive your comments about possible errors or incomplete information.

Nevertheless, Moog does not offer any guarantee that the contents conform with applicable legal regulations, nor does Moog accept any liability for possible remaining incorrect or incomplete information and the consequences thereof.

Changes are possible at any time without prior notice.

Part Number of the D636/D638 Operating Instructions

Please contact us at the above address and indicate the following part number when ordering these operating instructions:

B95872-001

Trademarks

Note: All product designations mentioned in these operating instructions are trademarks of the respective manufacturers. The absence of the trademark symbols ® or ™ does not indicate that the name is free from trademark protection.
Table of Contents

1 General Information
- 1.1 Using the Operating Instructions ... 1
- 1.2 Proper Use .. 1
- 1.3 Selection and Qualification of Personnel .. 1
- 1.4 Electromagnetic Compatibility (EMC) .. 2
- 1.5 Guarantee and Liability .. 2
- 1.6 Explanation of Symbols ... 2
- 1.7 Abbreviations ... 3

2 Safety Instructions .. 5

3 Function and Operational Characteristics of the Servo-Proportional Valves 7
- 3.1 General Information ... 7
 - 3.1.1 Representative Depiction of a Direct Drive Valve 8
 - 3.1.2 Permanent Magnet Linear Force Motor ... 8
- 3.2 Servo-proportional Valve Operational Modes ... 9
 - 3.2.1 Flow Control (Q-Control) ... 9
 - 3.2.2 Pressure Control (p-Control) ... 9
 - 3.2.3 Flow Control and Pressure Control (pQ-Control) (optional for D638) 9
 - 3.2.4 Notes on Controller Behavior .. 10
- 3.3 CAN Bus and CANopen ... 10
- 3.4 Analog Command Inputs ... 11
 - 3.4.1 Flow Command Input ±10 V Floating ... 12
 - 3.4.2 Flow Command Input ±10 mA Floating .. 12
 - 3.4.3 Flow Command Input ±10 mA Single-Ended .. 13
 - 3.4.4 Flow Command Input 4–20 mA Floating .. 13
 - 3.4.5 Flow Command Input 4–20 mA Single-Ended .. 14
 - 3.4.6 Pressure Command Input 0–10 V Floating (D638) .. 14
 - 3.4.7 Pressure Command Input 0–10 mA Floating (D638) 15
 - 3.4.8 Pressure Command Input 0–10 mA Single-Ended (D638) 15
 - 3.4.9 Pressure Command Input 4–20 mA Floating (D638) 16
 - 3.4.10 Pressure Command Input 4–20 mA Single-Ended (D638) 16
- 3.5 Analog Actual Value Outputs ... 17
 - 3.5.1 Actual Flow Value Output 4–20 mA ... 17
 - 3.5.2 Actual Pressure Output 4–20 mA (D638) .. 17
 - 3.5.3 Evaluation of the 4–20 mA Actual Value Output 17
- 3.6 Digital Inputs/Outputs ... 18
 - 3.6.1 Enable Input (optional) ... 18
 - 3.6.2 Digital Outputs .. 18
- 3.7 Status Display .. 18
 - 3.7.1 Module Status LED «MS» ... 18
 - 3.7.2 Network Status LED «NS» ... 19
Table of Contents

4 Technical Data and Scope of Delivery ...21
 4.1 General Technical Data ...21
 4.2 Hydraulic Data ..22
 4.2.1 Servo-Proportional Valve Configurations ..23
 4.2.2 Leakage Port Y ..24
 4.3 Electrical Data ...24
 4.4 Characteristic Curves ...25
 4.4.1 Step Response, Frequency Response, and Flow Diagram ...25
 4.4.2 Flow Characteristic Curve ..26
 4.4.3 Pressure Characteristic Curves ..26
 4.5 Dimensions (Installation Drawing) ..27
 4.6 Mounting Pattern and Mounting Surface ...27
 4.7 Scope of Delivery ...28

5 Transport and Storage ..29
 5.1 Packaging/Transport ..29
 5.2 Storage ...29

6 Mounting/Removing and Connection to the Hydraulic System ..31
 6.1 Mounting the Servo-Proportional Valve ..32
 6.2 Removing the Servo-Proportional Valve ...33

7 Electrical Connection ...35
 7.1 Pin Assignment ...36
 7.1.1 Valve Connector ...36
 7.1.2 CAN Connector ..37
 7.2 Wiring CAN Networks ..38
 7.2.1 Cable Lengths and Cable Cross Sections in CAN Networks ...39
 7.2.2 Suitable Cable Types ..40

8 Starting-Up the Servo-Proportional Valve ..41
 8.1 Filling and Flush the Hydraulic System ...42
 8.2 Venting (D638) and Starting-Up the Hydraulic System ...43
 8.3 Connection to the CAN Bus ...43
Table of Contents

9 Maintenance and Repair ...45

10 Trouble Shooting...47

11 Tools, Replacement Parts, and Accessories..49
 11.1 Tools for 6+PE Pin Connectors ..49
 11.2 Replacement Parts and Accessories D636/D638 ..49

12 Appendix ..51
 12.1 Additional Literature..51
 12.2 Quoted Standards...51
 12.3 Addresses...52

13 Index ...53
For your notes.
1 General Information

1.1 Using the Operating Instructions

These operating instructions apply only to Direct Drive Valve series D636 (flow control valves) and D638 (pressure control valves) with integrated digital electronics and CAN bus interface. The instructions contain the most important information for ensuring safe operation of servo-proportional valves.

The operating instructions must be stored near the servo-proportional valve or the upper level machine so that they are readily accessible at all times.

All persons responsible for mechanical planning, assembly, and operation must read, understand, and follow all points contained in these operating instructions. This requirement applies especially to the safety instructions.

Complying with the safety instructions helps to avoid accidents, problems, and errors.

It is absolutely essential for the user to know the safety instructions as well as nationally and internationally applicable safety regulations in order to handle the servo-proportional valve safely and operate it trouble-free.

1.2 Proper Use

D636 and D638 Direct Drive Valves are always operated as a component of a complete upper level system, for example in a machine.

They must be used only as control elements to control flow and/or pressure in hydraulic circuits that regulate position, speed, pressure, and power. The valves are intended for use with mineral oil-based hydraulic oils. The use of other media must be approved by Moog.

Use for other purposes or for purposes that extend beyond this description is not allowable.

Operation is allowable only in industrial environments in accordance with the DIN EN 50081-2 standard.

Operation in potentially explosive areas is not allowable.

Proper use also includes observation of the operating instructions and compliance with the inspection and maintenance regulations.

1.3 Selection and Qualification of Personnel

Only properly trained and instructed personnel with the necessary knowledge and experience must work with and on servo-proportional valves.
1.4 Electromagnetic Compatibility (EMC)

The D636 and D638 servo-proportional valves comply with the following standards:

- DIN EN 50081-2 Electromagnetic compatibility (EMC) - Generic emission standard - Part 2: Industrial environment
- DIN EN 61000-6-2 Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
- DIN EN 55011 Industrial, scientific and medical (ISM) radio-frequency equipment - Radio disturbance characteristics - Limits and methods of measurements

The D636 and D638 servo-proportional valves must not be used in residential, commercial and light industry as defined by the DIN EN 50081-1 and DIN EN 50082-1 standards.

1.5 Guarantee and Liability

In general, our "General Terms and Conditions for Sales" apply. These conditions are given to the operator upon contract closure.

Among other things, guarantee and liability claims for personal and property damages will not be considered if they are caused by one or more of the following:

- Improper use of the servo-proportional valve
- Improper mounting, start-up, and maintenance of the servo-proportional valve
- Improper handling of the servo-proportional valve, such as the use in a potentially explosive, excessively hot, or excessively cold environment
- Failure to follow the operating instructions regarding transport, storage, mounting, start-up, and maintenance of the servo-proportional valve
- Unauthorized structural changes to the servo-proportional valve
- Improperly performed repairs
- Disasters caused by foreign objects or force majeure

1.6 Explanation of Symbols

The following symbols are used in these operating instructions:

- Important information
- Danger of damage to machine or material
- General danger of injury and death
- Specific danger of injury and death
- Regulatory symbols
1.7 Abbreviations

The following abbreviations are used in these operating instructions:

- β_x: Symbol for filter fineness
- ν: Symbol for viscosity
- μP: Microprocessor
- CAN: Controller Area Network
- CiA: CAN in Automation user’s association
- DDV: Direct Drive Valve
- DIN: Deutsches Institut für Normung e. V. (German Institute for Standardization)
- DS: Draft Standard (published by CiA)
- DSP: Draft Standard Proposal (published by CiA)
- DSP: Digital Signal Processor
- EMC: Electromagnetic Compatibility
- EMI: Electromagnetic Interference
- EN: Europa-Norm (European standard)
- FPM: Fluorocarbon rubber
- F.S.: Full Scale output of transducer
- GND: Ground (signal ground)
- HNBR: Hydrogenated Nitril Butadiene Rubber
- ID: Identifier
- ID: Inner Diameter (of O-rings for example)
- ISO: International Organization for Standardization
- LED: Light Emitting Diode
- LSS: Layer Setting Services
- LVDT: Linear Variable Differential Transformer
 (senses the position of the spool in the valve [position transducer])
- MS: Module Status LED
- NAS: National American Standard
- NS: Network status LED
- p: Symbol for pressure
- PC: Personal Computer
- PE: Protective Earth
- PWM: Pulse Width Modulation
- Q: Symbol for volumetric flow
- VDMA: Verband Deutscher Maschinen- und Anlagenbau e. V.
 (German Machinery and Plant Manufacturers' Association)
For your notes.
2 Safety Instructions

The D636 and D638 servo-proportional valves must only be put into operation and used as described in these operating instructions. They must be operated only as a component of a complete upper level system, for example a machine, and only in industrial environments as defined by the DIN EN 50081-2 standard. The D636 and D638 servo-proportional valves must not be used in residential, commercial and light industry as defined by the DIN EN 50081-1 and DIN EN 50082-1 standards.

Operation in potentially explosive areas is not allowable.

During equipment planning and the use of servo-proportional valves, the safety and accident prevention regulations specific to the type of usage must be followed. These include, for example:

- DIN EN ISO 12100 Safety of machinery - Basic concepts, general principles for design
- DIN EN 982 Safety of machinery - Safety requirements for fluid power systems and their components - Hydraulics
- DIN EN 60204 Safety of machinery - Electrical equipment of machines

The manufacturer and the operator of the complete upper level system (mechanical equipment, for example) are responsible for compliance with the national and international safety and accident prevention regulations that apply to each particular case.

Modifying, changing, and interfering in the internal area of the servo-proportional valve may cause serious injuries and as such is forbidden.

Only properly trained and instructed personnel with the necessary knowledge and experience must work with and on servo-proportional valves.

The servo-proportional valves must only be mounted and removed, and electrical and hydraulic connections made by suitably trained technical personnel with the necessary authorization. They must perform such tasks in accordance with the applicable regulations and the valve must be in an idle and depressurized state and the machine switched off.

While this work is in progress, the machine must be secured against restarting, for example by:

- Locking the main command device and removing the key and/or
- attaching a warning sign to the main switch

Operating machines with leaking servo-proportional valves or a leaking hydraulic system is dangerous and not allowed.
When starting-up a servo-proportional valve on a field bus for the first time, we recommend operating the valve in a depressurized state.

The servo-proportional valve must only be operated via the configuration software if doing so does not endanger the machine and its immediate surroundings.

The configuration software must not be operated on a CAN bus if CAN communication is still running.

If the valve cannot be operated safely via the configuration software even when the CAN communication is switched off, it must only communicate via a direct (i.e. point-to-point) connection with the configuration software. The valve must be depressurized for this purpose.

(To create a direct connection between the configuration software and the valve, unplug the CAN bus cable from the valve and connect the valve directly to the PC's CAN bus interface card.)

Hydraulic oil can cause serious injuries, burns, and fires if it squirts out under high pressure.

Before mounting or removing servo-proportional valves, all pressure lines and reservoirs in the hydraulic circuit must therefore be depressurized.

Servo-proportional valves and hydraulic connection lines may become very hot while in operation.

When mounting, removing, or servicing servo-proportional valves, always wear suitable protective equipment such as work gloves.

When handling hydraulic fluids, always follow the safety guidelines applicable to the product.

The instructions in these operating instructions, especially chapter 2 (starting on page 5) and chapter 9 (starting on page 45) must be added to the operating instructions of the complete upper level system.

The allowable environmental conditions (see chapter 4, page 21) must be maintained at all times.

Do not transport or store the servo-proportional valves without first properly installing the shipping plate.

To avoid overheating the servo-proportional valve, mount it in a way that ensures good ventilation.

Do not mount valves directly onto mechanical parts that are subject to strong vibrations or sudden movement.

When mounted on units subject to sudden movement, the spool direction should not be the same as the unit's direction of movement.

The servo-proportional valves must not be immersed in liquid.
3 Function and Operational Characteristics of the Servo-Proportional Valves

3.1 General Information

The D636 valves (flow control valves) and the D638 valves (pressure control valves) are Direct Drive Valves (DDV). The valves are throttle valves for 3-, 2-, 4-, 2x2-way applications and are suitable for electro-hydraulic control of position, speed, pressure, and power - even under high dynamic requirements. A permanent magnet linear force motor is used to drive the spool. In contrast to proportional magnet drives, the linear force motor adjusts the spool in both working directions from the spring-loaded middle position. This gives the servo-proportional valve strong actuating power for the spool as well as good static and dynamic characteristics.

The following operational modes are possible:
- Flow control (Q-control) (D636)
 (see chapter 3.2.1, page 9)
- Pressure control (p-control) (D638)
 (see chapter 3.2.2, page 9)
- Flow control and pressure control (pQ-control) (optional for D638)
 (see chapter 3.2.3, page 9)

The digital driver and control electronics are integrated into the valve. The valve electronics contain a microprocessor system which performs all important functions via the valve software it contains. The digital electronics enable the valve to be controlled across the entire working range without drift and almost regardless of the temperature. The valves are parameterized, activated, and monitored via the built-in CAN bus interface in accordance with the CiA standard DSP 408 (device profile fluid power technology).

In addition, up to two analog command inputs and up to two analog actual value outputs with programmable functions are available as options.

Benefits of using D636/D638 Direct Drive Valves:
- Direct drive with permanent magnet linear force motor that provides high actuating power
- Pilot oil not required
- Pressure independent dynamics
- Minimal hysteresis and high response characteristics
- Minimal current requirement at and close to hydraulic null
 (hydraulic null is the position of the spool at which the pressures of a symmetrical spool are equally high in both blocked working ports)
- Standardized spool position signal
- Electrical null point adjustment is parameterizable
- If the electrical supply fails, a line breaks, or emergency stop is activated, the spool returns to the predefined spring-loaded position without overshooting a working position (fail-safe).
- Flow control and optional pressure control (on D638) with only one valve
- CAN bus interface
- optional analog inputs and outputs
3.1.1 Representative Depiction of a Direct Drive Valve

![Figure 1: Representative depiction of the servo-proportional valve](image1)

3.1.2 Permanent Magnet Linear Force Motor

![Figure 2: Representative depiction of the permanent magnet linear force motor](image2)
The permanent magnet linear force motor is a permanently magnetically excited differential motor. A portion of the magnetic force is already integrated with the permanent magnet. This makes the linear force motor's power requirement considerably lower than that of comparable proportional magnets.

The linear force motor drives the spool of the servo-proportional valve. In the zero current condition, the centering springs determine the starting position of the spool. The linear force motor enables the spool to be guided in both directions from the starting position, the linear force motor's actuating power being proportional to the coil current. The strong forces from the linear force motor and the centering springs enable precise movement of the spool, even when working against flow and frictional forces.

3.2 Servo-proportional Valve Operational Modes

3.2.1 Flow Control (Q-Control)

During this operating mode the spool position is controlled. The predefined command signal corresponds to a particular spool position. The spool position is proportional to the electrical signal.

The command signal (spool position command) is fed to the valve electronics. A position transducer (LVDT) measures the spool's actual position and forwards this information to the valve electronics. The electronics compares the actual spool position and command signal and generates a current to drive the linear force motor, which then brings the spool into the correct position.

The position command can be influenced with parameters in the valve software (for example: linearization, ramping, dead band, sectionally defined amplification, etc.).

3.2.2 Pressure Control (p-Control)

During this operating mode of the D638 valve the pressure in port A is controlled. The predefined command signal corresponds to a particular pressure in port A.

The command signal (pressure command in port A) is transmitted to the valve electronics. A pressure transducer measures the pressure in port A and feeds this to the valve electronics. The electronics compares the actual pressure signal and command signal and generates a current to drive the linear force motor, which then brings the spool into the correct position.

The pressure control function can be influenced with parameters in the valve software (for example: linearization, ramping, dead band, sectionally defined amplification, etc.). The pressure regulator is carried out as an extended PID controller. In the valve software, you can set the parameters of the PID controller.

3.2.3 Flow Control and Pressure Control (pQ-Control) (optional for D638)

This is a combination of flow and pressure control for which both command signals (external flow and pressure limit command) must be present.

The following are examples of possible combinations:

- Flow control with pressure limiting control
- forced changeover from one operating mode to the other
3.2.4 Notes on Controller Behavior

The resulting flow depends not only on the position of the spool, but also on the pressure drop \(\Delta p \) on the individual control edges.

At 100 % flow command signal with a rated pressure drop \(\Delta p_N \) of 35 bar (500 psi) per control edge, the result is the rated flow \(Q_N \). By altering the pressure drop, the flow \(Q \) also changes assuming a constant command signal, as shown by the following formula:

\[
Q = Q_N \sqrt{\frac{\Delta p}{\Delta p_N}}
\]

- \(Q \) [l/min] = actual flow
- \(Q_N \) [l/min] = rated flow
- \(\Delta p \) [bar] = actual pressure drop per control edge
- \(\Delta p_N \) [bar] = rated pressure drop per control edge

The following exert significant influence on the controlled system:

- Rated flow \(Q_N \)
- Actual pressure drop \(\Delta p \) per control edge
- Load stiffness
- Control volume being regulated by port A (D638 only)

Depending on differences in mechanical construction (such as volume, pipework, branching, reservoirs, etc.), different types of controller optimizations may be required in pressure control. These controller optimizations can be carried out with the configuration software via the CAN bus interface.

3.3 CAN Bus and CANopen

The servo-proportional valve is equipped with a CAN bus interface and can be operated within a CAN network.

The CAN bus is a differential 2-wire bus and was initially developed to facilitate rapid and interference-free networking of components in automobiles. But thanks to its many advantages and high level of reliability, the CAN bus is also suitable for applications within machines and has proven its usefulness as a widely accepted standard.

CANopen is a standardized communication profile for simple networking of CANopen-compatible devices from many different manufacturers.

The communication profile complies with the DS 301 standard, version 4.0, and is provided by CiA.

The CANopen standard defines various device profiles to enable connection of different types of devices, including for example: drives, controllers, angle transmitters, etc.

The function of the D636 and D638 series valves corresponds to the device profile for proportional servo valves in accordance with the CiA standard DSP 408. This device profile is based on a profile established by a working group within the VDMA entitled "Device Profile Fluid Power Technology".
The machine controller or other CAN bus nodes can use the CAN bus to exchange data with the servo-proportional valve in real time. This data includes command signals and actual values as well as control and status reports. In addition to this real time transmission, configuration and parametric data can be exchanged between the controller and the valve at any time.

The controller or other CAN bus nodes transmit command signals, device control commands, and configuration data via the CAN bus to the servo-proportional valve.

The controller or other CAN bus nodes can read actual values, status information, and the current configuration from the servo-proportional valve.

The integrated valve electronics can take over device-specific and drive-specific functions like command signal ramping or dead band compensation. This can relieve the external controller and the CAN communication because external controllers previously had to perform these functions themselves and the interpolated intermediate values had to be transmitted via the CAN bus.

Monitoring, error recognition, and diagnostic functions enable recognition of device malfunctions via the CAN bus.

3.4 Analog Command Inputs

Depending on the valve model, various analog command inputs for flow control and/or pressure control are available. (Pin assignment of the valve connector: see Table 6, page 36)

<table>
<thead>
<tr>
<th>Command input</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 V or 0–10 V</td>
<td>Simple measurement of the signal with an oscilloscope, for example</td>
</tr>
<tr>
<td>±10 mA or 0–10 mA</td>
<td>In contrast to the 4–20 mA command input, less power is required at low command signals; large transmission lengths are possible</td>
</tr>
<tr>
<td>4–20 mA</td>
<td>Line break monitoring and large transmission lengths possible</td>
</tr>
</tbody>
</table>

All current inputs are available as floating or single-ended versions. All voltage inputs are floating, but can be connected externally as single-ended inputs.

© Moog GmbH

D636/D638 Operating Instructions (Version 1.2; 11/05) 11
3.4.1 Flow Command Input ±10 V Floating

The spool stroke is proportional to the input voltage U_{in}.

- $U_{in} = +10$ V 100 % valve opening $P \leftrightarrow A$ and $B \leftrightarrow T$
- $U_{in} = 0$ V Spool in hydraulic null position
- $U_{in} = -10$ V 100 % valve opening $P \leftrightarrow B$ and $A \leftrightarrow T$

This command input is a floating, differential input. (The potential difference of each input to GND must be between -15 V and +32 V.) If differential voltage is not available, one input pin has to be connected to signal ground according to the required operating direction.

3.4.2 Flow Command Input ±10 mA Floating

The spool stroke is proportional to the input current I_{in}.

- $I_{in} = +10$ mA 100 % valve opening $P \leftrightarrow A$ and $B \leftrightarrow T$
- $I_{in} = 0$ mA Spool in hydraulic null position
- $I_{in} = -10$ mA 100 % valve opening $P \leftrightarrow B$ and $A \leftrightarrow T$

The input current I_{in} must be between -25 mA and +25 mA!

This command input is a floating input. (The potential difference of each input to GND must be between -15 V and +32 V.) If a floating current source is not available, one input pin has to be connected to signal ground according to the required operating direction.
3.4.3 Flow Command Input ±10 mA Single-Ended

The spool stroke is proportional to the input current I_{in}.

- $I_{in} = +10$ mA: 100 % valve opening $P \Rightarrow A$ and $B \Rightarrow T$
- $I_{in} = 0$ mA: Spool in hydraulic null position
- $I_{in} = -10$ mA: 100 % valve opening $P \Rightarrow B$ and $A \Rightarrow T$

The point of reference for this command input is GND.

⚠️ The input current I_{in} must be between -25 mA and +25 mA!

⚠️ Depending on the required operating direction, one of the two input pins must not be connected.

3.4.4 Flow Command Input 4–20 mA Floating

The spool stroke is proportional to the input current I_{in}.

- $I_{in} = 20$ mA: 100 % valve opening $P \Rightarrow A$ and $B \Rightarrow T$
- $I_{in} = 12$ mA: Spool in hydraulic null position
- $I_{in} = 4$ mA: 100 % valve opening $P \Rightarrow B$ and $A \Rightarrow T$

脊rous the input current I_{in} must be between -25 mA and +25 mA!

⚠️ This command input is a floating input. (The potential difference of each input to GND must be between -15 V and +32 V.) If a floating current source is not available, one input pin has to be connected to signal ground according to the required operating direction.

⚠️ Command signals $I_{in} < 3$ mA (due to line break, for example) indicate an error during flow control. The valve is switched off for safety reasons and goes into fail-safe position.
3.4.5 Flow Command Input 4–20 mA Single-Ended

The spool stroke is proportional to the input current I_{in}.

- $I_{in} = 20$ mA: 100% valve opening $P \rightarrow A$ and $B \rightarrow T$
- $I_{in} = 12$ mA: Spool in hydraulic null position
- $I_{in} = 4$ mA: 100% valve opening $P \rightarrow B$ and $A \rightarrow T$

The point of reference for this command input is GND.

- The input current I_{in} must be between -25 mA and +25 mA!
- Depending on the required operating direction, one of the two input pins must not be connected.
- Command signals $I_{in} < 3$ mA (due to line break, for example) indicate an error during flow control. The valve is switched off for safety reasons and goes into fail-safe position.

3.4.6 Pressure Command Input 0–10 V Floating (D638)

The pressure in control port A is proportional to the input voltage U_{in}.

- $U_{in} = 10$ V: 100% pressure in control port A
- $U_{in} = 0$ V: 0% pressure in control port A

- This command input is a floating, differential input. (The potential difference of each input to GND must be between -15 V and +32 V.) If differential voltage is not available, one input pin has to be connected to signal ground.
3.4.7 Pressure Command Input 0–10 mA Floating (D638)

The pressure in control port A is proportional to the input current I_{in}.
- $I_{in} = 10$ mA $\quad \text{100 \% pressure in control port A}$
- $I_{in} = 0$ mA $\quad \text{0 \% pressure in control port A}$

The input current I_{in} must be between -25 mA and +25 mA!

This command input is a floating input. (The potential difference of each input to GND must be between -15 V and +32 V.) If a floating current source is not available, create a connection to 0 V of the command signal source.

3.4.8 Pressure Command Input 0–10 mA Single-Ended (D638)

The pressure in control port A is proportional to the input current I_{in}.
- $I_{in} = 10$ mA $\quad \text{100 \% pressure in control port A}$
- $I_{in} = 0$ mA $\quad \text{0 \% pressure in control port A}$

The point of reference for this command input is GND.

The input current I_{in} must be between -25 mA and +25 mA!

Only one of the two input pins must be connected.
3.4.9 Pressure Command Input 4–20 mA Floating (D638)

![Pressure command input 4–20 mA floating (circuit and characteristic curve)](image)

The pressure in control port A is proportional to the input current I_{in}.

$I_{in} = 20$ mA 100 % pressure in control port A
$I_{in} = 4$ mA 0 % pressure in control port A

The input current I_{in} must be between -25 mA and +25 mA!

This command input is a floating input. (The potential difference of each input to GND must be between -15 V and +32 V.) If a floating current source is not available, create a connection to 0 V of the command signal source.

Command signals $I_{in} < 3$ mA (due to line break, for example) indicate an error during pressure control. The valve is switched off for safety reasons and goes into fail-safe position.

3.4.10 Pressure Command Input 4–20 mA Single-Ended (D638)

![Pressure command input 4–20 mA single-ended (circuit and characteristic curve)](image)

The pressure in control port A is proportional to the input current I_{in}.

$I_{in} = 20$ mA 100 % pressure in control port A
$I_{in} = 4$ mA 0 % pressure in control port A

The point of reference for this command input is GND.

The input current I_{in} must be between -25 mA and +25 mA!

Only one of the two input pins must be connected.

Command signals $I_{in} < 3$ mA (due to line break, for example) indicate an error during pressure control. The valve is switched off for safety reasons and goes into fail-safe position.
3.5 Analog Actual Value Outputs

Depending on the valve model, various analog actual value outputs for flow control and/or pressure control (optional) are available. (Pin assignment of the valve connector: see Table 6, page 36)

3.5.1 Actual Flow Value Output 4–20 mA

The output current \(I_{\text{out}} \) is proportional to the spool stroke.

- \(I_{\text{out}} = 20 \text{ mA} \) 100 % valve opening \(P \Rightarrow A \) and \(B \Rightarrow T \)
- \(I_{\text{out}} = 12 \text{ mA} \) Spool in hydraulic null position
- \(I_{\text{out}} = 4 \text{ mA} \) 100 % valve opening \(P \Rightarrow B \) and \(A \Rightarrow T \)

GND is the point of reference for the actual value output 4–20 mA.

- Line breaks can be recognized externally with the 4–20 mA actual value output.
- The 4–20 mA output is short-circuit protected.

3.5.2 Actual Pressure Output 4–20 mA (D638)

The output current \(I_{\text{out}} \) is proportional to the pressure in control port A.

- \(I_{\text{out}} = 20 \text{ mA} \) 100 % pressure in control port A
- \(I_{\text{out}} = 4 \text{ mA} \) 0 % pressure in control port A

GND is the point of reference for the actual value output 4–20 mA.

- Line breaks can be recognized externally with the 4–20 mA actual value output.
- The 4–20 mA output is short-circuit protected.

3.5.3 Evaluation of the 4–20 mA Actual Value Output

The 4–20 mA outputs can be evaluated in accordance with the following circuit.

![Circuit for measuring the actual value \(I_{\text{out}} \) for valves with 6+PE-pin valve connectors](image)

Evaluation of the actual value outputs
3.6 Digital Inputs/Outputs

Depending on the valve model, different digital inputs and outputs are available.

3.6.1 Enable Input (optional)

Signals to the enable input from 8.5 VDC to 24 VDC (based on GND) enable the operation of the valve. Signals of less than 6.5 VDC force the valve into fail-safe mode. (Pin assignment of the 6+PE-pin valve connector, see page 36)

If the enable input is not activated, the valve will be in fail-safe mode.

The D636 and D638 servo-proportional valves are also available without the enable input.

3.6.2 Digital Outputs

Depending on the model, up to two optional digital outputs are available.

3.7 Status Display

The valve’s operating mode and the network status are displayed on multi-color light emitting diodes (status display LEDs) on the electronics housing.

After the valve’s power supply is switched on, the valve electronics perform a self-test, indicated by red and green blinking LEDs.

3.7.1 Module Status LED «MS»

The module status LED displays an available power supply and possible operational and error states.

<table>
<thead>
<tr>
<th>Module status LED «MS»</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>no supply power</td>
</tr>
<tr>
<td>green</td>
<td>normal operation</td>
</tr>
<tr>
<td>blinking green</td>
<td>valve standby mode</td>
</tr>
<tr>
<td>blinking red</td>
<td>correctable error</td>
</tr>
<tr>
<td>red</td>
<td>unrecoverable error</td>
</tr>
<tr>
<td>blinking red-green</td>
<td>self-test</td>
</tr>
</tbody>
</table>

Table 2: Conditions of the module status LED «MS»
3.7.2 Network Status LED «NS»

The network status LED displays the status of the CAN network.

<table>
<thead>
<tr>
<th>Network status LED «NS»</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>no supply power / not online</td>
</tr>
<tr>
<td>blinking green</td>
<td>online, but not connected to other CAN bus nodes</td>
</tr>
<tr>
<td>green</td>
<td>online and connected with other CAN bus nodes</td>
</tr>
<tr>
<td>blinking red</td>
<td>time overrun</td>
</tr>
<tr>
<td>red</td>
<td>major error</td>
</tr>
<tr>
<td>blinking red-green</td>
<td>self-test</td>
</tr>
</tbody>
</table>

Table 3: Conditions of the network status LED «NS»
For your notes.
4 Technical Data and Scope of Delivery

4.1 General Technical Data

Maximum operating pressure

<table>
<thead>
<tr>
<th>Port</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports P and B</td>
<td>350 bar (5,000 psi)</td>
</tr>
<tr>
<td>Port A</td>
<td></td>
</tr>
<tr>
<td>for D636</td>
<td>350 bar (5,000 psi)</td>
</tr>
<tr>
<td>for D638</td>
<td>dependent on pressure transducer, max. 350 bar (5,000 psi)</td>
</tr>
<tr>
<td>Port T without Y</td>
<td>50 bar (724 psi) (see chapter 4.2.2, page 24)</td>
</tr>
<tr>
<td>Port T with Y</td>
<td>350 bar (5,000 psi)</td>
</tr>
<tr>
<td>Port Y</td>
<td>depressurized to the tank</td>
</tr>
</tbody>
</table>

Allowable ambient conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>-20 °C to +60 °C</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>30 g, 3 axes, frequency: 5–2,000 Hz</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>60 g, 6 directions, half-sine 11 ms</td>
</tr>
</tbody>
</table>

Gasket material

<table>
<thead>
<tr>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNBR, FPM, others upon request</td>
</tr>
</tbody>
</table>

Hydraulic fluid

Allowable fluids

Mineral oil-based hydraulic fluid in accordance with DIN 51524 parts 1–3, other fluids upon request

Allowable temperature

-20 °C to +80 °C

Viscosity

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>recommended</td>
<td>15-100 mm²/s</td>
</tr>
<tr>
<td>allowable</td>
<td>5-400 mm²/s</td>
</tr>
</tbody>
</table>

Cleanliness level, recommended

for functional safety ISO 4406 < 15 / 12
for life cycle (wear and tear) ISO 4406 < 14 / 11

The cleanliness of the hydraulic fluid greatly influences the functional safety (safe positioning of the spool, high resolution) and the wearing protection (control edges, pressure gain, leakage losses) of the valve.

System filter

High pressure filter (without bypass, but with dirt indication) in the main flow path directly in front of the valve, as close as possible

Filter fineness, recommended

for functional safety \(\beta_{10} \geq 75 \) (10 µm (0.0004 in) absolute)
for life cycle \(\beta_6 \geq 75 \) (6 µm (0.00024 in) absolute)

Shipping plate

Delivered with oilproof shipping plate
4.2 Hydraulic Data

<table>
<thead>
<tr>
<th>Valve construction type</th>
<th>Single stage, sliding spool with bushing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting pattern</td>
<td>in accordance with ISO 4401-03-03-0-94 (with or without leakage port Y, see page 24)</td>
</tr>
<tr>
<td>Ø of the ports</td>
<td>7.9 mm (0.3 in)</td>
</tr>
<tr>
<td>Valve configuration</td>
<td>2-way, 3-way, 4-way, and 2x2-way operation</td>
</tr>
<tr>
<td>Actuation</td>
<td>directly with permanent magnet linear force motor</td>
</tr>
<tr>
<td>Pilot oil supply</td>
<td>none</td>
</tr>
<tr>
<td>Rated flow Q\text{N}</td>
<td>5 (1.3) / 10 (2.6) / 20 (5.3) / 40 (10.6) l/min (gpm) (depending on the model) (at ∆p\text{N} = 35 bar (500 psi) per control edge, tolerance ±10 %)</td>
</tr>
<tr>
<td>Max. leakage flow Q\text{L} \text{)1)}</td>
<td>0.15 (0.040) / 0.3 (0.079) / 0.6 (0.16) / 1.2 (0.32) l/min (gpm) (depending on the model)</td>
</tr>
<tr>
<td>Max. flow</td>
<td>75 l/min (19.8 gpm)</td>
</tr>
<tr>
<td>Spool lap</td>
<td>Zero lap, < 3 % or 10 % positive lap (depending on the model)</td>
</tr>
<tr>
<td>Step response time for 0 to 100 % stroke</td>
<td>12 ms (typical)</td>
</tr>
<tr>
<td>Threshold \text{)1)}</td>
<td>< 0.1 % (in Q-control)</td>
</tr>
<tr>
<td>Hysteresis \text{)1)}</td>
<td>< 0.2 % (in Q-control)</td>
</tr>
<tr>
<td>Null shift</td>
<td>< 1.5 % (at ∆T = 55 K)</td>
</tr>
<tr>
<td>Linearity of pressure control (only with D638)</td>
<td>< 0.5 % F.S.</td>
</tr>
</tbody>
</table>

\text{)1)} At operating pressure p_\text{p} = 140 bar (2,000 psi), oil viscosity \nu = 32 mm²/s and an oil temperature of 40 °C (104 °F)
4.2.1 Servo-Proportional Valve Configurations

The following valve configurations are possible with the D636/D638 (optional) valves:

- 4-way operation
- 3-way operation
- 2-way operation
- 2x2-way operation

4-way and 3-way operation

In 4-way operation, the servo-proportional valves can be used to control the flow in ports A and B (use as throttle valves).

To obtain the 3-way operation, close either port A or port B.

If the pressure in the tank port T exceeds 50 bar (724 psi), the leakage port Y must be used (see chapter 4.2.2, page 24).

The valves are available with zero lap, less than 3 % or 10 % positive lap.

![Figure 15: 4-way/3-way operation with fail-safe function (hydraulic symbols)](image1)

2-way and 2x2-way operation

In 2-way and 2x2-way operation, the servo-proportional valves can be used to control the flow in one direction (use as throttle valves).

In 2x2-way operation, the valve can be used in 2-way applications for higher flows. To do this, the port P must be connected externally to B and A externally with T.

For 2x2-way operation, the leakage port Y must always be connected (see chapter 4.2.2, page 24).

![Figure 16: 2-way/2x2-way operation (hydraulic symbols)](image2)
4.2.2 Leakage Port Y

D636 and D638 servo-proportional valves can be delivered with or without the leakage port Y active. Purchase orders for the valve must indicate whether port Y will be used.

The leakage port Y must be used in the following cases:
- if the pressure in the tank port T becomes greater than 50 bar (724 psi)
- with 2x2-way operation

4.3 Electrical Data

Supply power
nominal 24 VDC, 18 to 32 VDC

Duty cycle
100 %

Valve connector
6+PE pin connector with pin contacts in accordance with DIN EN 175201-804

Protection type in accordance with DIN EN 60529
IP65 without connectors
IP67 connectors plugged and locked

Power consumption
- \(P_{\text{min}} \) (motor in neutral position) 9.6 W (0.4 A at 24 VDC)
- \(P_{\text{max}} \) (at max. flow) 28.8 W (1.2 A at 24 VDC)

EMC protection requirements
in accordance with DIN EN 55011, DIN EN 50081-2 and DIN EN 61000-6-2

Inputs/outputs
- Command input 0–10 V \(R_{\text{in}} = 300 \, \text{k}\Omega \)
- Command input \(\pm 10 \, \text{V} \) \(R_{\text{in}} = 300 \, \text{k}\Omega \)
- Command input 0–10 mA \(R_{\text{in}} = 200 \, \Omega \)
- Command input \(\pm 10 \, \text{mA} \) \(R_{\text{in}} = 200 \, \Omega \)
- Command input 4–20 mA \(R_{\text{in}} = 200 \, \Omega \)
- Actual value output 4–20 mA \(R_{L_{\text{max}}} = 500 \, \Omega \) with respect to GND
- Enable input (function: see chapter 3.6.1, page 18)
 - Signals to the enable input from 8.5 VDC to 24 VDC (based on GND)
 - enable the operation of the valve.
 - Signals of less than 6.5 VDC force the valve into fail-safe mode.
4.4 Characteristic Curves

4.4.1 Step Response, Frequency Response, and Flow Diagram

Figure 17: Step response

Figure 18: Frequency response

Figure 19: Flow diagram
4.4.2 Flow Characteristic Curve

![Flow Characteristic Curve](image)

Figure 20: Flow characteristic curve

Figure 21: Flow characteristic curve (zero cut)

Figure 22: Design for measuring the flow characteristic curve

4.4.3 Pressure Characteristic Curves

![Pressure Characteristic Curve](image)

Figure 23: Pressure characteristic curve of flow control valves

Figure 24: Design for measuring the pressure characteristic curve of flow control valves

Figure 25: Pressure characteristic curve of pressure control valve (D638)

Figure 26: Design for measuring the pressure characteristic curve of pressure control valves (D638)
4.5 Dimensions (Installation Drawing)

![Figure 27: Installation drawing (dimensions in mm, values in parenthesis in inches)](image)

4.6 Mounting Pattern and Mounting Surface

![Figure 28: Mounting Pattern, ISO 4401-03-03-0-94, without port X (dimensions in mm, values in parenthesis in inches)](image)

<table>
<thead>
<tr>
<th>P</th>
<th>A</th>
<th>B</th>
<th>T</th>
<th>X¹</th>
<th>Y</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>F₄</th>
<th>G²</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>-</td>
<td>3.3</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>M5</td>
<td>4.0</td>
</tr>
<tr>
<td>21.5</td>
<td>12.7</td>
<td>30.2</td>
<td>21.5</td>
<td>-</td>
<td>40.5</td>
<td>40.5</td>
<td>40.5</td>
<td>0</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>25.9</td>
<td>15.5</td>
<td>15.5</td>
<td>5.1</td>
<td>9.0</td>
<td>-0.75</td>
<td>31.75</td>
<td>31</td>
<td>31.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Dimensions for mounting pattern (dimensions in mm, values in parenthesis in inches)

¹ do not drill port X; ² coding pin hole G has to be at least 4 mm (0.16 in) deep
4.7 Scope of Delivery

The following items are included in delivery of the valve:

- Servo-proportional valve with attached oilproof shipping plate on the hydraulic ports
- 4 O-rings ID 9.25 (0.36) x ∅ 1.8 (0.07) for the P, T, A, B ports (dimensions in mm, values in parenthesis in inches)
- 1 O-ring ID 7.65 (0.30) x ∅ 1.8 (0.07) for the Y port (dimensions in mm, values in parenthesis in inches)
5 Transport and Storage

The allowable environmental conditions (see chapter 4, page 21) must be maintained at all times.

Do not transport or store the servo-proportional valves without first properly installing the shipping plate.

5.1 Packaging/Transport

Please read the following carefully:

- Do not damage valves during packaging or transportation.
- Transport valves only in the properly closed original packaging.
- Store the valve's original packaging for later use.
- Immediately inform the freight company and Moog in writing about any damages incurred during transportation.
- Remove the shipping plate only directly before mounting the valve.
- Store the shipping plate and the accompanying attachment screws.
- Always install the shipping plate before transporting the valves.

5.2 Storage

Please read the following carefully:

- Store valves only in the properly closed original packaging.
- Protect valves from dust and moisture.
- Always install the shipping plate before transporting the valves in order to protect the valve from the entry of dirt or moisture.
For your notes.
6 Mounting/Removing and Connection to the Hydraulic System

The servo-proportional valves must only be mounted and removed, and electrical and hydraulic connections made by suitably trained technical personnel with the necessary authorization. They must perform such tasks in accordance with the applicable regulations and the valve must be in an idle and depressurized state and the machine switched off.

While this work is in progress, the machine must be secured against restarting, for example by:

- Locking the main command device and removing the key and/or
- attaching a warning sign to the main switch

Hydraulic oil can cause serious injuries, burns, and fires if it squirts out under high pressure. Before mounting or removing servo-proportional valves, all pressure lines and reservoirs in the hydraulic circuit must therefore be depressurized.

Servo-proportional valves and hydraulic connection lines may become very hot while in operation.

When mounting, removing, or servicing servo-proportional valves, always wear suitable protective equipment such as work gloves.

When handling hydraulic fluids, always follow the safety guidelines applicable to the product.

Technical data and especially the information on the servo-proportional valve’s nameplate must be read carefully and complied with.

Remove the shipping plate from the hydraulic ports only shortly before placing the servo-proportional valve on the mounting surface.

Always check the mounting surface for dirt (and clean if necessary) immediately before mounting the valve.

To avoid overheating the servo-proportional valve, mount it in a way that ensures good ventilation. Do not mount valves directly onto mechanical parts that are subject to strong vibrations or sudden movement. When mounted on units subject to sudden movement, the spool direction should not be the same as the unit’s direction of movement.

If a servo-proportional valve contains a venting screw (D638), always mount the valve in such a way that it can be vented. In order to allow air that may be contained in the valve to escape after the venting screw is opened, make sure the venting screw points upward.
6.1 Mounting the Servo-Proportional Valve

Never use the shipping plate’s attachment screws to attach the servo-proportional valve.

The mounting surface must be free of residue and dirt during mounting of the servo-proportional valve. Use a clean, soft, and lint free cloth to clean the mounting surface. Do not use cleaning wool or waste cotton. Do not use cleaning methods that could attack the mounting surface mechanically or chemically.

If a servo-proportional valve contains a venting screw (D638), always mount the valve in such a way that it can be vented. In order to allow air that may be contained in the valve to escape after the venting screw is opened, make sure the venting screw points upward.

A 4 mm Allen wrench is needed to mount the servo-proportional valve.

The servo-proportional valve may be mounted in any position, fixed or movable. For characteristics of the mounting surface, see chapter 4.1, page 22.

Procedure for mounting the servo-proportional valve:

1. Clean the mounting surface.
2. Remove the shipping plate from the valve’s hydraulic ports and retain it for later use, for example maintenance.
3. Check that O-rings are available for the ports and that they are in the correct position.
4. Place the valve on the mounting surface and adjust it so it aligns with the mounting holes.
5. Fasten the valve by alternately tightening each of the installation screws (Allen screws) without distortion (see table below for proper tightening torque).

<table>
<thead>
<tr>
<th>Installation screws (in accordance with DIN EN ISO 4762)</th>
<th>Quantity</th>
<th>Tightening torque ±10 % (in accordance with DIN EN ISO 4762)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 5 x 55 mm (2.2 in)</td>
<td>4</td>
<td>Quality class 10.9: 6.8 Nm (60.2 lb-in) 10 Nm (89 lb-in)</td>
</tr>
</tbody>
</table>

Table 5: Installation material and tightening torque values
6.2 Removing the Servo-Proportional Valve

The servo-proportional valves must only be mounted and removed, and electrical and hydraulic connections made by suitably trained technical personnel with the necessary authorization. They must perform such tasks in accordance with the applicable regulations and the valve must be in an **idle and depressurized** state and the machine switched off.

While this work is in progress, the machine must be secured against restarting, for example by:

- Locking the main command device and removing the key and/or
- Attaching a warning sign to the main switch

Hydraulic oil can cause serious injuries, burns, and fires if it squirts out under high pressure. Before mounting or removing servo-proportional valves, all pressure lines and reservoirs in the hydraulic circuit must therefore be depressurized.

Attach the shipping plate to the hydraulic ports immediately after removing the valve.

A 4 mm Allen wrench is needed to remove the valve.

The valve is removed in the reverse order to the mounting.

Procedure for removing the servo-proportional valve:

1. Loosen the valve’s installation screws.
2. Remove the valve from the mounting surface.
3. Check that O-rings are available for the ports and that they are in the correct position.
4. Attach the shipping plate to the hydraulic ports.
5. Store the servo valve in the original packaging.
6. Cover the ports of the hydraulic system to prevent contamination.
For your notes.
7 Electrical Connection

The servo-proportional valves must only be mounted and removed, and electrical and hydraulic connections made by suitably trained technical personnel with the necessary authorization. They must perform such tasks in accordance with the applicable regulations and the valve must be in an idle and depressurized state and the machine switched off.

While this work is in progress, the machine must be secured against restarting, for example by:

- Locking the main command device and removing the key and/or
- Attaching a warning sign to the main switch

Servo-proportional valves and hydraulic connection lines may become very hot while in operation.

When mounting, removing, or servicing servo-proportional valves, always wear suitable protective equipment such as work gloves.

When handling hydraulic fluids, always follow the safety guidelines applicable to the product.

Technical data and especially the information on the servo-proportional valve's nameplate must be read carefully and complied with.

Do not place the servo-proportional valve's connection cables in the immediate vicinity of high voltage lines or together with cables that switch inductive or capacitive loads.

An EMC-compliant power unit must be used for the supply voltage. The electrical connection must be completed in an EMC-compliant manner.

Procedure for establishing the servo-proportional valve's electrical connection:

1. Wire the servo-proportional valve in accordance with the pin assignment described in chapter 7.1 (page 36).
2. Construct the equipotential system, the protective ground, and shielding in accordance with the enclosed TN 353 technical note.
3. Construct CAN bus wiring as described in chapter 7.2 (page 37).
7.1 Pin Assignment

7.1.1 Valve Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Signal type</th>
<th>Voltage floating</th>
<th>Current floating</th>
<th>Current single-ended</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Supply voltage</td>
<td></td>
<td>±10 V, 0–10 V</td>
<td>±10 mA, 0–10 mA, 4–20 mA</td>
<td>±10 mA, 0–10 mA, 4–20 mA</td>
</tr>
<tr>
<td>B</td>
<td>Power ground / signal ground</td>
<td></td>
<td></td>
<td>0 V (GND)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Enable input</td>
<td></td>
<td>8.5–24 VDC based on pin B: operation of the valve enabled</td>
<td></td>
<td>< 6.5 VDC based on pin B: valve fail-safe condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(see also chapter 3.6.1, page 18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Command input</td>
<td></td>
<td>The potential difference (measured against pin B) must be between -15 V and +32 V.</td>
<td></td>
<td>Do not connect Pin E!</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>The input current must be between -25 mA and +25 mA!</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Actual value output</td>
<td></td>
<td>I_{out}: 4–20 mA based on GND (I_{out} is proportional to the position of the spool or to the regulated pressure (on D638); the output is short-circuit protected; for interpretation of the actual value output, see chapter 3.5.3, page 17); R_L: 0-500 Ω</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Pin assignment of the 6+PE-pin valve connector

![Diagram](image)

Figure 29: Pin assignment of the 6+PE-pin valve connector (looking towards the connector on the valve)

The mating connector for the 6+PE-pin valve connector is available as an accessory (see chapter 11.2, page 49).
7 Electrical Connection

7.1.2 CAN Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN_SHLD shield</td>
</tr>
<tr>
<td>2</td>
<td>CAN_V+ is not attached in the valve</td>
</tr>
<tr>
<td>3</td>
<td>CAN_GND</td>
</tr>
<tr>
<td>4</td>
<td>CAN_H Transceiver H</td>
</tr>
<tr>
<td>5</td>
<td>CAN_L Transceiver L</td>
</tr>
</tbody>
</table>

Table 7: Pin assignment of the CAN connector

We recommend the use of molded cord sets with a straight mating connector (see Table 11, page 40).

Alignment of the CAN connector may vary. Please align the pins in accordance with the key.
7.2 Wiring CAN Networks

The servo-proportional valve is equipped with a galvanically isolated CAN bus interface. The CAN bus interface is supplied internally; it is therefore not absolutely necessary to connect CAN_V+ 24 VDC (pin 2 of the CAN connector).

Note the following points when wiring CAN networks:

- All cables, plug connectors, and terminal resistors used in CAN networks must comply with DIN ISO 11898.
- In general, it is important to comply with all information in the enclosed TN 353 technical note.
- Use shielded four-lead cables (twisted pair) and surge impedance of 120 Ω (CAN_H, CAN_L, CAN_GND and CAN_SHLD (cable shield) grounded, optionally CAN_V+ 24 VDC).
- A CAN bus cable must not branch but short stub cables with T-connectors are allowed.
- Stub cables must be as short as possible (for the maximum stub cable length, see Table 10, page 40).
- The cable between CAN_L and CAN_H on both CAN bus cable ends must be ended by a terminal connector with terminal resistance of 120 Ω ± 10 %.
- Connect reference potential CAN_GND and CAN_SHLD to the protective ground (PE) at only one point (on a terminal connector, for example).
- The transmission rate must be adapted to the CAN bus cable length (see Table 8, page 39).
- Do not lay CAN bus cables in the immediate vicinity of EMI sources. If EMI sources cannot be avoided, use double shielded cables.
For CAN bus nodes without a galvanically isolated CAN bus inter-
face, CAN_GND is generally connected to the 0V supply voltage in-
side the device. In these cases, the supply voltage connection cable
must be grounded at the same place as the CAN_GND connection
cable.

To avoid noise in extensive CAN networks, avoid CAN bus nodes
that do not have galvanically isolated CAN bus interfaces.

If it is not possible to refrain from CAN bus nodes that do not have
galvanically isolated CAN bus interfaces, arrange these nodes in the
immediate vicinity of the central ground point. The cable length to
this central ground point should be kept as short as possible!

7.2.1 Cable Lengths and Cable Cross Sections in
CAN Networks

<table>
<thead>
<tr>
<th>Transmission rate</th>
<th>Maximum cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 kbit/s</td>
<td>25 m (984 in)</td>
</tr>
<tr>
<td>800 kbit/s</td>
<td>50 m (1,969 in)</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>100 m (3,937 in)</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>250 m (9,843 in)</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m (19,685 in)</td>
</tr>
<tr>
<td>100 kbit/s</td>
<td>650 m (25,591 in)</td>
</tr>
<tr>
<td>50 kbit/s</td>
<td>1,000 m (39,370 in)</td>
</tr>
<tr>
<td>20 kbit/s</td>
<td>2,500 m (98,425 in)</td>
</tr>
<tr>
<td>10 kbit/s</td>
<td>5,000 m (196,850 in)</td>
</tr>
</tbody>
</table>

Table 8: Recommendation for maximum cable lengths in
CAN networks, depending on the transmission rate

<table>
<thead>
<tr>
<th>Cable cross section</th>
<th>Maximum cable length for n CAN bus nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 32</td>
</tr>
<tr>
<td></td>
<td>n = 64</td>
</tr>
<tr>
<td></td>
<td>n = 100</td>
</tr>
<tr>
<td>0.25 mm² (22 AWG)</td>
<td>200 m (7,874 in)</td>
</tr>
<tr>
<td></td>
<td>170 m (6,693 in)</td>
</tr>
<tr>
<td></td>
<td>150 m (5,906 in)</td>
</tr>
<tr>
<td>0.5 mm² (20 AWG)</td>
<td>360 m (14,173 in)</td>
</tr>
<tr>
<td></td>
<td>310 m (12,305 in)</td>
</tr>
<tr>
<td></td>
<td>270 m (10,623 in)</td>
</tr>
<tr>
<td>0.75 mm² (18 AWG)</td>
<td>550 m (21,654 in)</td>
</tr>
<tr>
<td></td>
<td>470 m (18,504 in)</td>
</tr>
<tr>
<td></td>
<td>410 m (16,142 in)</td>
</tr>
</tbody>
</table>

Table 9: Recommendation for maximum cable lengths in CAN networks,
depending on the cable cross section and the number of CAN bus nodes
<table>
<thead>
<tr>
<th>Transmission rate</th>
<th>Maximum stub cable length</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Cumulative</td>
</tr>
<tr>
<td>1,000 kbit/s</td>
<td>2 m (78.7 in)</td>
<td>20 m (787 in)</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>6 m (236 in)</td>
<td>39 m (1,535 in)</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>6 m (236 in)</td>
<td>78 m (3,071 in)</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>6 m (236 in)</td>
<td>156 m (6,142 in)</td>
</tr>
</tbody>
</table>

Table 10: Maximum allowable stub cable lengths in CAN networks

7.2.2 Suitable Cable Types

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Cable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans Turck GmbH & Co. KG</td>
<td>577 Flexlife thin cable,</td>
</tr>
<tr>
<td>Witzlebenstraße 7</td>
<td>5710 Flexlife mid cable,</td>
</tr>
<tr>
<td>45472 Mülheim an der Ruhr</td>
<td>575 Flexlife thick cable</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Tel.: +49-208-4952-0,</td>
<td></td>
</tr>
<tr>
<td>Fax: +49-208-4952-264</td>
<td></td>
</tr>
<tr>
<td>E-mail: turckmh@mail.turck-globe.de</td>
<td></td>
</tr>
<tr>
<td>http://www.turck.com</td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Suitable cable types for CAN networks
8 Starting-Up the Servo-Proportional Valve

The servo-proportional valves must only be mounted and removed, and electrical and hydraulic connections made by suitably trained technical personnel with the necessary authorization. They must perform such tasks in accordance with the applicable regulations and the valve must be in an **idle and depressurized** state and the machine **switched off**.

While this work is in progress, the machine must be secured against restarting, for example by:

- Locking the main command device and removing the key and/or
- attaching a warning sign to the main switch

Operating machines with leaking servo-proportional valves or a leaking hydraulic system is dangerous and not allowed.

When starting-up a servo-proportional valve on a field bus for the first time, we recommend operating the valve in a depressurized state.

Hydraulic oil can cause serious injuries, burns, and fires if it squirts out under high pressure.
Before mounting or removing servo-proportional valves, all pressure lines and reservoirs in the hydraulic circuit must therefore be depressurized.

Servo-proportional valves and hydraulic connection lines may become very hot while in operation.

When mounting, removing, or servicing servo-proportional valves, always wear suitable protective equipment such as work gloves.

When handling hydraulic fluids, always follow the safety guidelines applicable to the product.

Technical data and especially the information on the servo-proportional valve's nameplate must be read carefully and complied with.

Remove the shipping plate from the hydraulic ports only shortly before placing the servo-proportional valve on the mounting surface.

Attach the shipping plate to the hydraulic ports immediately after removing the valve.

Fresh oil is contaminated. When filling the hydraulic system, always use a filling filter with a fineness of at least $\beta_{10} \geq 75$ (10 µm absolute).

Before the initial start-up of a new facility or after completion of modifications, the hydraulic system must be carefully flushed in accordance with the facility manufacturer's instructions.
The following steps are necessary when starting-up the servo-proportional valve:

1. Prepare the hydraulic system in accordance with chapter 8.1 (page 42).
2. Mount the valve in accordance with chapter 6.1 (page 32).
3. Wire the valve’s electrical connection in accordance with chapter 7 (starting on page 35).
4. Connect the valve to the field bus in accordance with chapter 8.3 (starting on page 43).

A Windows-based configuration program is available that simplifies start-up on the CAN bus.

- The configuration software is a graphical user interface that simplifies parameterization and diagnosis of the servo-proportional valve and enables the execution of a valve test.
- See the configuration software's handbook or the configuration software's online help for descriptions of the configuration software.

5. Start-up the hydraulic system in accordance with chapter 8.2 (starting on page 43).

8.1 Filling and Flushing the Hydraulic System

Procedure for filling and flushing the hydraulic system:

1. Depressurize the hydraulic system.
2. Fill the hydraulic system in accordance with the instructions provided by the system manufacturer.
3. Before starting the flushing process, insert into the pressure filter suitable flushing elements in place of the high pressure filter elements.
4. Remove the servo-proportional valve (see chapter 6.2, page 33).
5. Instead of the servo-proportional valve, you must install a flushing plate or, if allowed by the system, a switching valve.

- This switching valve must not introduce any potentially dangerous conditions into the system.
- Use the flushing plate to flush the lines P and T.
- The switching valve can also be used to flush the actuator with lines A and B.
6. Carefully flush the hydraulic system in accordance with the manufacturer's instructions.
 While doing this, please observe the following:
 - The hydraulic oil's operating temperature should be reached during the flushing process.
 - Observe the minimum flushing time: \(t = \frac{V}{Q} \times 5 \) [h] (\(V \) = tank contents in l, \(Q \) = pump flow rate in (l/min))
 - End the flushing process when the system cleanliness level of 15/12 as specified by ISO 4406 or class 6 as specified by NAS 1638 or better has been achieved.
7. Depressurize the hydraulic system.
8. Replace flushing elements in the pressure filter with suitable high pressure elements.

9. Remove the flushing plate or switching valve

10. Mount the servo-proportional valve (see chapter 6.1, page 32).

8.2 Venting (D638) and Starting-Up the Hydraulic System

A 5 mm Allen wrench is needed to open and close the servo-proportional valve’s venting screw (D638 only).

Procedure for venting the hydraulic system:

1. Bring the hydraulic system into operation in accordance with the manufacturer's instructions.

2. After switching on the supply voltage, check the status display LEDs «MS» and «NS» in accordance with chapter 3.7 (starting on page 18).

3. Vent the hydraulic system in accordance with the manufacturer's instructions.

4. Vent the servo-proportional valve (D638 only):
 - Pressure command must be set.
 - Supply pressure must be set to a low value.
 - Carefully open the venting screw approximately one rotation.
 - Wait until no more air escapes or until the escaping hydraulic oil contains no more air bubbles.
 - Close the venting screw (tightening torque of 10 Nm (89 lb-in)).
 - Clean the hydraulic oil that has escaped.

 It may be necessary to repeat this procedure.

5. Check the hydraulic system for external leaks.

8.3 Connection to the CAN Bus

The servo-proportional valve must only be operated via the configuration software if doing so does not endanger the machine and its immediate surroundings.

The configuration software must not be operated on a CAN bus if CAN communication is still running.

If the valve cannot be operated safely via the configuration software even when the CAN communication is switched off, it must only communicate via a direct (i.e. point-to-point) connection with the configuration software. The valve must be depressurized for this purpose.

(To create a direct connection between the configuration software and the valve, unplug the CAN bus cable from the valve and connect the valve directly to the PC's CAN bus interface card.)
When starting-up a servo-proportional valve on a field bus for the first time, we recommend operating the valve in a depressurized state.

The servo-proportional valve's hydraulic and electrical connections must have been made properly in accordance with these operating instructions.

Each module address (node-ID) must be used only once within a CAN network.

All CAN bus nodes within a CAN network must be set to the same transmission rate value.

The configuration software communicates with the valve via the standard CANopen services. The valve and the configuration software must not be operated within a CAN network. Instead, the valve and the configuration software must communicate via a direct connection (point-to-point).

If the configuration software is to be operated within a CAN network, the following points must be observed:

- Data exchange with the valve may be disturbed if another device (such as a controller) connects to the valve simultaneously.
- Node guarding must be activated only if no other CAN bus nodes are monitoring the valve via this service.
- CAN telegrams can also be received by other CAN bus nodes.
- This can have unforeseeable results.

A condition necessary for connecting the valve to the CAN bus is correct wiring in accordance with chapter 7.2 (starting on page 37).

The factory setting for the valve's module address (node-ID) is 127; the factory setting for the transmission rate is 500 kbit/s.

If the valve is to receive a different module address (node-ID) or if the transmission rate is to be changed, make these adjustments via the LSS (Layer Setting Services) through the CAN bus.

The valve's module address (node-ID) and transmission rate can be changed with the configuration software.
9 Maintenance and Repair

The servo-proportional valves must only be mounted and removed, and electrical and hydraulic connections made by suitably trained technical personnel with the necessary authorization. They must perform such tasks in accordance with the applicable regulations and the valve must be in an idle and depressurized state and the machine switched off.

While this work is in progress, the machine must be secured against restarting, for example by:

- Locking the main command device and removing the key and/or
- Attaching a warning sign to the main switch

D636 and D638 servo-proportional valves are generally maintenance-free. It is necessary only to check the servo-proportional valve and the hydraulic connections at regular intervals (once per day, for example) for externally visible damages and deficiencies such as leaks.

If damages or deficiencies are found on the servo-proportional valve or the machine, report this immediately to the responsible persons. If necessary, stop and secure the machine immediately.

Operating machines with leaking servo-proportional valves or a leaking hydraulic system is dangerous and not allowed.

If leaks are found, repair these immediately in accordance with all safety instructions and the operating instructions.

D636 and D638 servo-proportional valves must be repaired only by Moog or Moog authorized service centers.
For your notes.
10 Trouble Shooting

The servo-proportional valves must only be mounted and removed, and electrical and hydraulic connections made by suitably trained technical personnel with the necessary authorization. They must perform such tasks in accordance with the applicable regulations and the valve must be in an idle and depressurized state and the machine switched off.

While this work is in progress, the machine must be secured against restarting, for example by:

- Locking the main command device and removing the key and/or
- attaching a warning sign to the main switch

<table>
<thead>
<tr>
<th>Problem</th>
<th>Trouble Shooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak at the valve's connection surface</td>
<td>Check for the presence of o-rings on ports A, B, P, T and Y and make sure the o-rings are properly seated and are not damaged. Check to make sure that installation screws are tight (see Table 5, page 32 for screw tightening torque).</td>
</tr>
<tr>
<td>Leak at the linear force motor's plug</td>
<td>Check ports P and T for proper connection. Check the max. pressure in ports T or Y. When the Y port is not in use, the return pressure in T must not exceed 50 bar (724 psi).</td>
</tr>
<tr>
<td></td>
<td>If a leak is discovered on the linear force motor's plug, send the valve to Moog or a Moog authorized service center for inspection.</td>
</tr>
<tr>
<td>Valve exhibits no hydraulic reaction</td>
<td>Inspect the hydraulic installation. Check for the presence of hydraulic pressure. Check for the presence of supply voltage. Do this by checking the status display LEDs (see chapter 3.7, page 18 for more information about the status display LEDs). Check signals at the connector, especially the enable input. Check valve status via the CAN bus interface. If an enable is not ready, it will not be possible to overcome the "DISABLE" status. Specify command signal as an analog value or via the CAN bus interface (depending on the model). Check the configuration and parameters. Check to make sure the connectors are not corroded. Command signal not ready or line break?</td>
</tr>
<tr>
<td>System unstable; control circuit oscillating</td>
<td>Check the external control circuit, may be necessary to reduce amplification. You can optimize the parameters (P, I, D, etc.) of pressure control valves.</td>
</tr>
<tr>
<td>Problem</td>
<td>Trouble Shooting</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Communication problems in CAN networks</td>
<td>Check the status display LEDs (see chapter 3.7, page 18 for more information about the status display LEDs).</td>
</tr>
<tr>
<td></td>
<td>Check for correct cable terminations.</td>
</tr>
<tr>
<td></td>
<td>Check the wiring of the CAN network (see chapter 7.2 for more information, starting on page 37)</td>
</tr>
<tr>
<td></td>
<td>Check the module address (node-ID) of the CAN bus nodes. (Each module address (node-ID) must be used only once within a CAN network.)</td>
</tr>
<tr>
<td></td>
<td>Check to make sure that the valve's transmission rate matches that of the other devices on the CAN bus network.</td>
</tr>
<tr>
<td></td>
<td>CAN bus diagnosis tools allow you to observe data traffic on the CAN bus, making it easier to identify the causes of problems.</td>
</tr>
</tbody>
</table>
11 Tools, Replacement Parts, and Accessories

11.1 Tools for 6+PE Pin Connectors

<table>
<thead>
<tr>
<th>Designation</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimping tool for mating connector</td>
<td>C21162-001</td>
</tr>
<tr>
<td>Positioner, tool kit for crimping tool with contact sizes 16 and 20</td>
<td>C21163-001</td>
</tr>
<tr>
<td>Installation tool for contact sizes 16 and 20</td>
<td>C21164-001</td>
</tr>
<tr>
<td>Removal tool for contact sizes 16 and 20</td>
<td>C21165-001</td>
</tr>
</tbody>
</table>

Table 12: Tools for 6+PE pin connectors

11.2 Replacement Parts and Accessories D636/D638

<table>
<thead>
<tr>
<th>Part designation</th>
<th>Quantity</th>
<th>Comments</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-rings for ports P, T, A, B</td>
<td>4</td>
<td>ID 9.25 (0.36) x Ø 1.8 (0.07): HNBR 90 Shore</td>
<td>B97009-013-42082-013</td>
</tr>
<tr>
<td>O-ring for port Y</td>
<td>1</td>
<td>ID 7.65 (0.30) x Ø 1.8 (0.07): HNBR 90 Shore</td>
<td>B97009-012-42082-012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(dimensions in mm, values in parenthesis in inches)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(included in delivery)</td>
<td></td>
</tr>
<tr>
<td>Shipping plate</td>
<td>1</td>
<td>(included in delivery)</td>
<td>B46035-001</td>
</tr>
<tr>
<td>Mating connector for 6+PE pin valve connector, waterproof, IP67</td>
<td>1</td>
<td>DIN EN 175201-804 suitable cable with min. Ø 10 mm (0.39 in), max. Ø 12 mm (0.47 in)</td>
<td>B97007-061</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not included in delivery)</td>
<td></td>
</tr>
<tr>
<td>Dust protection cap for CAN connector</td>
<td>1</td>
<td>(not included in delivery)</td>
<td>C55823-001</td>
</tr>
<tr>
<td>Start-up cable for CAN bus</td>
<td>1</td>
<td>(not included in delivery)</td>
<td>TD3999-132</td>
</tr>
<tr>
<td>Flushing plate for ports P, A, B, T, X, Y</td>
<td>1</td>
<td>(not included in delivery)</td>
<td>B46634-002</td>
</tr>
<tr>
<td>Installation screws for the valve</td>
<td>4</td>
<td>M 5 x 55 mm (2.2 in) DIN EN ISO 4762, quality class 10.9, tightening torque: 6.8 Nm (60.2 lb-in)</td>
<td>A03665-050-055</td>
</tr>
<tr>
<td></td>
<td>required</td>
<td>(not included in delivery)</td>
<td></td>
</tr>
<tr>
<td>Configuration software</td>
<td>1</td>
<td>(not included in delivery)</td>
<td>B99104</td>
</tr>
<tr>
<td>Operating instructions for D636/D638 series</td>
<td>1</td>
<td>(not included in delivery)</td>
<td>B95872-001</td>
</tr>
</tbody>
</table>

Table 13: Replacement parts and accessories for the D636/D638 series
For your notes.
12 Appendix

12.1 Additional Literature

12.2 Quoted Standards

DIN EN 982: Safety of machinery - Safety requirements for fluid power systems and their components - Hydraulics

DIN EN 50082-1, Edition 1997-11: Electromagnetic compatibility (EMC) - Generic immunity standard - Part 1: Residential, commercial and light industry

DIN EN 55011, Edition 2000-05: Industrial, scientific and medical (ISM) radio-frequency equipment - Radio disturbance characteristics - Limits and methods of measurements

DIN EN 60204: Safety of machinery - Electrical equipment of machines

DIN EN 60529, Edition 2000-09: Degrees of protection provided by enclosures (IP Code)

DIN EN 61000-6-2, Edition 2000-03: Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments

DIN EN 175201-804, Edition 2000-09: Detail specification: Circular connectors - Round contacts, size diameter 1.6 mm, threaded coupling

DIN EN ISO 4762, Edition 1998-02: Hexagon socket head cap screws
12.3 Addresses

CAN in Automation (CiA) e. V.
Address: CiA
Am Weichselgarten 26
91058 Erlangen (Germany)
Tel.: +49 9131 601091
Fax: +49 9131 601092
http://www.can-cia.de

VDMA
Address: VDMA
German Machinery and Plant Manufacturers' Association
Lyoner Straße 18
60528 Frankfurt/Main (Germany)
Tel.: +49 69 6603 1332
Fax: +49 69 6603 1459
http://www.vdma.org

Institute for Fluid Drives and Controllers (IFAS) of RWTH Aachen
Address: IFAS RWTH
Steinbachstraße 53
52074 Aachen (Germany)
Tel.: +49 241 807511
Fax: +49 241 8888194
http://www.rwth-aachen.de/ifas/
13 Index

βx (symbol for filter fineness) .. 3
Δp (symbol for pressure drop).. 10
Δpμ (symbol for rated pressure drop) ... 10
ν (symbol for viscosity) .. 3
μP in the representative depiction of the valve ... 8
is the abbreviation for microprocessor ... 3
2-way operation ... 23
2x2-way operation .. 23
3-way operation ... 23
4-way operation ... 23

A
Abbreviations used .. 3
Accessories for the D636/D638 series .. 49
Actual value outputs, see outputs ... 22
Addresses ... 52
IFAS RWTH ... 52
VDMA .. 52
Ambient conditions, allowable
ambient temperature: -20°C to 60°C .. 21
shock resistance: 60g, 6 directions, half-sine 11 ms .. 21
vibration resistance: 30g, 3 axes, frequency: 5–2,000 Hz ... 21
Ambient temperature, allowable: -20°C to 60°C ... 21
Analog actual value outputs, see outputs .. 22
Analog command inputs, see inputs.. 22
Analog inputs, see inputs .. 22
Analog outputs, see outputs .. 22
Armature (in the representative depiction of the linear force motor) .. 8
Attachment screws, see installation screws for the valve .. 8

B
Bearing (in the representative depiction of the linear force motor) ... 8
Benefits of the D636/D638 valves ... 7
Bus interface, see CAN bus: CAN bus interface .. 23
Bushing (in the representative depiction of the valve) ... 8

C
Cable cross sections in CAN networks ... 39
Cable lengths in CAN networks .. 39
Cable types (suitable for CAN networks) ... 39
Cable (suitable for CAN networks) ... 39
CAN (abbreviation for Controller Area Network) .. 39
CAN bus .. 10
Cable cross sections .. 39
Cable lengths .. 39
Cable types (suitable for CAN networks) ... 39
Cable (suitable for CAN networks) ... 39
CAN bus interface ... 10
CAN bus interface ... 10
maximum voltage capacity: 40 VDC ... 25
technical data ... 25
Cable networks .. 39
Cable cross sections .. 39
cable lengths .. 39
cable types (suitable for wiring) ... 39
stub cable length .. 39
maximum allowable in CAN networks .. 39
transmission rates .. 39
CiA standard DS 301 .. 10
changing the valve's module address (node-ID) via LSS ... 44
changing the valve's transmission rate via LSS ... 44
data exchange with the valve ... 11
device classes .. 10
device profile (CiA standard DSP 408) ... 7, 10, 25
diagnosis .. 11
error recognition ... 11
factory setting of the valve's module address node-ID=127 .. 44
factory setting of the valve's transmission rate 500 kbit/s ... 44
monitoring ... 11
start-up cable for CAN bus, part number for ordering: TD999-132 .. 49
stub cable length maximum allowable in CAN networks .. 40
transmission rates in CAN networks .. 39
wiring CAN networks .. 38
figure "example of CAN network wiring* ... 38
suitable cable types .. 40
CAN bus interface, see CAN bus: CAN bus interface ... 10
CAN connector, see connector: CAN connector .. 44
CAN networks, see CAN bus: CAN networks ... 44
Centering springs in the representative depiction of the linear force motor .. 8
Characteristic curves
flow characteristic curve ... 25
design for measurement ... 25
flow characteristic curve (zero cut) ... 25
flow diagram ... 25
frequency response ... 25
pressure characteristic curve design for measuring for flow control valves .. 26
for pressure control valves (D638) .. 26
flow control valve ... 26
pressure control valve (D638) ... 26
step response .. 25
CIA
Address .. 52
CiA standard DS 301 .. 10
CiA standard DS 408 ... 7, 10, 25
is the abbreviation for CiA in Automation ... 3
Cleanliness level of the hydraulic fluid
recommended for functional safety:
ISO 4406 < 15 / 12 ... 21
recommended for life cycle (wear and tear):
ISO 4406 < 14 / 11 .. 21
Coil (in the representative depiction of the linear force motor)8
Command inputs, see inputs
Duty cycle: 100 % ... 24
Dust protection plate, see shipping plate
Dust protection cap for CAN connector
DSP

DIN (abbreviation for Deutsche Industriestandards)
Dimensions... 27
Digital outputs, see outputs
Digital inputs, see inputs
Digital signal processor (DSP) .. 10
Control edge ... 10

DDV (abbreviation for Direct Drive Valve).............................. 3
Dead band compensation
Device classes, see CAN bus: device classes
Device Profile Fluid Power Technology, see CAN bus: device profile
Device profile for proportional servo valves, see CAN bus: device profile
Diagnosis via CAN bus.. 11
Diagnosis via CAN bus.. 11
Digital inputs, see inputs
Digital outputs, see outputs
Digital signal processor (DSP) .. 10

Duty cycle: 100 % .. 24

E
Electric strength, see maximum voltage capacity
Electrical connection of the valve.. 35
Electrical data ... 24
Electromagnetic Compatibility (EMC) 24
EMC
EMC protection requirements .. 2, 24
EMC standards:
DIN EN 50081-1 .. 1, 2, 5, 24
DIN EN 50081-2 .. 1, 2, 5, 24
DIN EN 50082-1 .. 1, 2, 5, 24
DIN EN 50082-2 .. 1, 2, 5, 24
DIN EN 50081-2, DIN EN 50082-1 and DIN EN 50082-2
is the abbreviation for Electromagnetic Compatibility 3
EMI is the abbreviation for Electromagnetic Interference 3

Emission
in industrial environments, see EMC standards: DIN EN 50081-2
in residential, commercial and light industry, see EMC standards: DIN EN 50081-1
EN (abbreviation for Europa Norm [European standard]) 3
Enable input, see inputs: digital inputs: enable input Error
correctable error (module status LED «MS» blinks red) 18
error recognition via CAN bus.. 11
error removal, see trouble shooting
major error in network communication
(network status LED «NS» lights red).............................. 19
unrecoverable error
(module status LED «MS» lights red).............................. 18
Explosive areas: operation is not allowed in potentially explosive areas! ... 1, 5
External fusing for each valve: 1.8 A slow-blow 25

Filter fineness
filter fineness of the system filter,
see system filter: filter fineness symbol: \(f_x \).................. 3

Field bus module
(in the representative depiction of the valve).......................... 8
Figure
2-way operation (hydraulic symbol)................................. 23
2-way/2x2-way operation (hydraulic symbols)............... 23
4-way/3-way operation spring-centered (hydraulic symbols) 23
Circuit for measuring the actual value \(I_{akt} \) 17
Design for measuring the flow characteristic curve 26
Design for measuring the pressure characteristic curve
of flow control valves.. 26
of pressure control valves (D638)............................... 26
Example of CAN network wiring 38
Flow characteristic curve .. 26
Flow characteristic curve (zero cut)................................. 26
Flow diagram.. 25
Frequency response ... 25
Installation drawing .. 27
Mounting pattern... 27
Pin assignment of the 6+PE-pin valve connector 36
Pin assignment of the CAN connector 37
Pressure characteristic curve
of flow control valves.. 26
of pressure control valve (D638)................................. 26
Representative depiction of a direct drive valve 8
Representative depiction of the linear force motor 8
Status display LEDs... 18
Step response ... 25
Filling the hydraulic system ... 42

dD636/D638 Operating Instructions (Version 1.2; 11/05) 54

© Moog GmbH
Flow
actual flow output (analog) 4–20 mA.............................. 17, 24
flow characteristic curve,
see characteristic curves: flow characteristic curve
flow command input (analog)
±10 mA floating... 12, 24
±10 mA single-ended... 13, 24
±10 V floating... 12, 24
4–20 mA floating... 13, 24
4–20 mA single-ended... 14, 24
flow diagram, see characteristic curves: flow diagram
formula for calculating the flow Q on the flow control.... 10
maximum flow: 75 l/min (19.8 gpm)............................ 22
symbol: Q: .. 4
Flow amplification, see flow rate gain
Flow and pressure control (optional for D638)........ 9
Flow characteristic curve,
see characteristic curves: flow characteristic curve
Flow control
command signal.. 9
controlling the spool position.................................... 9
flow and pressure control (optional for D638).............. 9
data for calculating the flow Q................................. 10
influencing variables
position of the spool... 10
pressure drop Δp on the individual control edges..... 10
Flow diagram, see characteristic curves: flow diagram
Flow rate gain.. 26
Fluid Power Technology, Device Profile,
see CAN bus: device profile
Flushing plates
part number for ordering: B46634-002......................... 49
used to flush the P and T lines.................................. 42
Flushing the hydraulic system................................. 42
FPM (O-ring material).. 3
Frequency response,
see characteristic curves: frequency response
FS is the abbreviation for
Full Scale output of the transducer.......................... 3
Function of the valve... 7
Fusing, external fusing for each valve: 1.6 A slow-blow.... 25

G
Gaskets, usable materials.. 21
GND (abbreviation for Ground (signal ground))........... 3
Guarantee... 2

H
Hydraulic fluid
allowable fluids.. 21
allowable temperature range: -20°C to 80°C............. 21
cleanness level (recommended level (ISO 4406))
for functional safety: < 15 / 12............................. 21
for life cycle (wear and tear): < 14 / 11.................. 21
viscosity
allowable viscosity: 5-400 mm²/s............................ 21
recommended viscosity: 15-100 mm²/s.................. 21
Hydraulic oil, see hydraulic fluid
Hydraulic symbols
2-way operation.. 23
2x2-way operation.. 23
3-way operation.. 23
4-way operation.. 23
Hydraulic system
filling and flushing.. 42
starting-up... 43
venting... 43
Hysteresis.. 22

I
ID
is the abbreviation for Identifier............................. 3
is the abbreviation for Inner Diameter
(of O-rings for example)................................. 3
Immunity
in industrial environments,
see EMC standards: DIN EN 61000-6-2
in residential, commercial and light industry,
see EMC standards: DIN EN 50082-1
Industrial environments, operation in........................ 1
Inputs
analogue inputs
analogue command inputs.................................... 24
command inputs (analog)...................................... 11
available analogue command inputs..................... 11
flow command input
±10 mA floating.. 12, 24
±10 mA single-ended.. 13, 24
±10 V floating.. 12, 24
4–20 mA floating.. 13, 24
4–20 mA single-ended... 14, 24
pressure command input
0–10 mA floating (D638).................................... 15, 24
0–10 mA single-ended (D638)............................. 15
0–10 V floating (D638).. 14, 24
4–20 mA floating (D638).................................... 16, 24
4–20 mA single-ended (D638)............................. 16, 24
in the representative depiction of the valve........ 8
digital inputs... 18
enable input... 18
in the representative depiction of the valve........ 8
Installation drawing... 27
Installation screws for the valve
for attaching the valve.. 32
part number for ordering: A03685-050-055.......... 49
tightening torque.. 32
Interface, see CAN bus: CAN bus interface
Interpretation of the analog actual value outputs...... 17
ISO is the abbreviation for
International Organization for Standardization.... 3

L
Leakage flow... 22
Leakage port Y... 24
LED
in the representative depiction of the valve.............. 8
is the abbreviation for Light Emitting Diode............ 3
status display LEDs... 18
Liability.. A, 2
Light emitting diodes (LEDs), see LED
Linear force motor
components... 9
driven by the valve electronics.......................... 9
in the representative depiction of the valve............. 8
representative depiction.. 8
Linearity of pressure control (only with D638): < 0.5 %........ 22
Literature, additional literature.......................... 51
LSS
changing the valve's module address (node-ID)
via LSS.. 44
changing the valve's transmission rate via LSS........ 44
is the abbreviation for Layer Setting Services...... 3
LVDT
determining the position of the spool and
transmitting the position to the valve electronics... 9
in the representative depiction of the valve............. 8
is the abbreviation for Linear Variable Differential
Transformer (position transducer)......................... 3
M

Maintenance ... 45
Mass of the valve: 2.5 kg (5.5 lb) 22
Materials: usable materials for O-rings 21
Maximum voltage capacity of the CAN bus interface:
40 VDC .. 25
Microprocessor (µP), see µP
Module address (node-ID)
changing the valve's module address via LSS 44
factory setting for the valve: node-ID=127 44
Module status LED «MS».. 18
Mounting via the CAN bus 11
Mounting pattern .. 27
Mounting the valve
mounting option .. 22
mounting surface for the valve
average surface finish, Ra:
< 0.8 µm (32 µin) .. 22
flattness:
< 0.01 mm (0.0004 in) over 100 mm (3.9 in) 22
procedure .. 32
required tools: 4 mm Allen wrench 32
MS, see module status LED «MS»

N

NAS (abbreviation for National American Standard) 3
Network communication
status display on network status LED «NS» 19
Network status LED «NS», see module address
Node-ID, see module address
Normal valve operation
(module status LED «MS» lights green) 18
NS, see network status LED «NS»
Null shift: < 1.5 % (at T = 55 K) 22

O

Operating instructions D636/D638
part number: B95972-001 .. 49
using ... 1
Operating pressure, see pressure
Operation is not allowable in potentially explosive areas! 1, 5
Operational characteristics of the valve 7
Operational modes of the valve
p-control, see pressure control
pQ-control, see flow control and pressure control
Q-control, see flow control
O-rings
part number for reordering 49
usable materials .. 21
Outputs
analog outputs
actual value outputs (analog)
actual flow output 4–20 mA (D638) 17, 24
actual pressure output 4–20 mA (D636) 17, 24
figure "Circuit for measuring the actual value i_M" 17
in the representative depiction of the valve 8
interpretation of the analog actual value outputs 17
digital outputs .. 18
in the representative depiction of the valve 8

P

p (symbol for pressure) .. 4
Packaging .. 29
Part numbers
configuration software: B99104 49
dust protection cap for CAN connector: C55823-001 49
flushing plate for P, A, B, T, X, Y: B46634-002 49
installation screws for the valve: A03665-050-055 49
matting connector for 6+PE pin valve connector:
B97007-001 .. 49
operating instructions D636/D638: B95872-001 49
O-ring for port Y
FM 90 shore: 45082-012 .. 49
NBR 90 shore: 45082-012 .. 49
O-rings for ports P, T, A, B
FM 90 Shore: 45082-013 .. 49
NBR 90 Shore: 45122-013 .. 49
shipping plate: B46305-001 49
start-up cable for CAN bus: TD3999-132 49
PC (abbreviation for Personal Computer) 4
p-control, see pressure control
PE (abbreviation for protective earthing) 4
Permanent magnet linear force motor, see linear force motor
Permanent magnets (in the representative depiction of
the linear force motor) ... 8
Pilot oil supply for the valve: none required 22
Pin assignment
6+PE-pin valve connector 36
CAN connector .. 37
Plug (in the representative depiction of the
linear force motor) .. 8
Ports
hole diameter: 7.9 mm (0.3 in) 22
in the representative depiction of the valve 8
pressure command in A is the input signal for
the valve electronics .. 9
Position transducer (LVDT) 9
in the representative depiction of the valve 8
Power consumption
Pmax (at max. flow):
28.8 W (1.2 A at 24 VDC) 24
P nec (motor in neutral position):
9.6 W (0.4 A at 24 VDC) 24
Power supply, see supply power
pQ-control, see flow control and pressure control
Pressure
actual pressure output (analog) 4–20 mA (D638) 17, 24
allowable pressure in port A
for D636: 350 bar (5,000 psi) 21
for D638: dependent on pressure transducer
max. 350 bar (5,000 psi) 21
allowable pressure in port T (with Y)
350 bar (5,000 psi) .. 21
allowable pressure in port T (without Y)
50 bar (724 psi) .. 21
allowable pressure in port Y
depressurized to the tank 21
allowable pressure in ports P and B
350 bar (5,000 psi) .. 21
Pressure characteristic curve, see characteristic
curves: pressure characteristic curve
pressure command input (analog)
0–10 mA floating (D638) 15, 24
0–10 mA single-ended (D636) 15, 24
0–10 V floating (D638) ... 14, 24
4–20 mA floating (D636) 16, 24
4–20 mA single-ended (D638) 16, 24
pressure control
command signal ... 9
controlling the pressure in port A 9
pressure drop δP ... 10

© Moog GmbH
D636/D638 Operating Instructions (Version 1.2; 11/05) 56
Pressure
- pressure fluid, see hydraulic fluid
- pressure transducer
 for determining the pressure in port A and transmitting the pressure to the valve electronics
 in the representative depiction of the valve
- symbol: p
- valve electronics
 for driving the linear force motor
- in the representative depiction of the valve
- pressure control in port A is the input signal
- Pressure characteristic curve, see characteristic curves
- Pressure control, see pressure: pressure control
- Pressure sensor, see pressure: pressure transducer
- Problem removal, see trouble shooting
- Proper use of the servo-proportional valve
- Protection type of the valve
 IP65 (without connectors)
 IP67 (connectors plugged and locked)
- Protective earth (abbreviation: PE)
- Pulse width modulation (PWM)
 in the representative depiction of the valve
 is the abbreviation for Pulse Width Modulation

Q
- Q (symbol for volumetric flow)
- Q control, see flow control
- QN (symbol for rated flow)

R
- Radio disturbance from electrical devices
 see EMC standards: DIN EN 55011
- Radio interference, see radio disturbance
- Rated flow
- QN in the formula for calculating the flow
- Rated pressure drop \(\Delta p \)
- Removing the valve
 procedure
- required tools: 4 mm Allen wrench
- Repair
- Replacement parts for the D636/D638 series
- Representative depiction
 direct drive valve
 linear force motor

S
- Safety instructions
- connection to the CAN bus
- connection to the hydraulic system
- electrical connection
- filling the hydraulic system
- flushing the hydraulic system
- maintenance
- mounting the valve
- removing the valve
- Removing the valve
- repair
- starting-up the valve
- storage
- transport
- Scope of delivery
- Sectional drawing, see representative depiction

Self-test of the valve electronics
after power supply is switched on

Shipping plate
must be installed for transport and storage
part number for reordering: B46035-001
Shock resistance:
60g, 6 directions, half-sine 11 ms
Signal ground: abbreviation: GND
Spool
figure "Circuit for measuring the actual value I_Lm" in the representative depiction of the valve
position command is the input signal for the valve electronics

Spool lap
zero lap, < 3 % or 10 % positive spool lap

Standards
- DIN 51524
- DIN EN 175201-804
- DIN EN 50081-2
- DIN EN 50081-1
- DIN EN 55011
- DIN EN 60204
- DIN EN 60529
- DIN EN 61000-6-2
- DIN EN 982
- DIN EN ISO 4762
- DIN EN ISO 12100
- DIN ISO 11898
- EMC standards
- ISO 4401
- ISO 4406
- NAS 1638
- overview of quoted standards

Start-up
- module status LED »MS« blinks green
- Start-up
- hydraulic system
- valve
- Start-up cable for CAN bus
- part number for ordering: TD3999-132
- Status display LEDs, see LED
- Status LEDs, see LED
- Step response, see characteristic curves: step response
- Step response time for 0 to 100 % stroke: 12 ms
- Storage (only with attached shipping plate)
- Stub cable length (maximum allowable in CAN networks)
- Supply power
- power supply:
 nominal 24 VDC, 18 to 32 VDC
- supply power failure
 (status display LEDs are off)
- valve electronics self-test after power supply is switched on
- Symbols used
- System filter
- recommended for functional safety:
 \(\beta_0 \geq 75 \text{ (10 \(\mu \text{m} \) (0.0004 in) absolute)} \)
- recommended for life cycle (wear and tear):
 \(\beta_0 \geq 75 \text{ (6 \(\mu \text{m} \) (0.00024 in) absolute)} \)
Table

Available analog command inputs	11
Conditions of the module status LED «MS»	18
Conditions of the network status LED «NS»	19
Dimensions for mounting pattern	27
Installation material and tightening torques	32
Maximum allowable stub cable lengths in CAN networks	40
Pin assignment of the 6+PE-pin valve connector	36
Pin assignment of the CAN connector	37
Recommendation for maximum cable lengths in CAN networks depending on the cable cross section and the number of CAN bus nodes	39
Replacement parts and accessories for the D636/D638 series	49
Suitable cable types for CAN networks	40
Tools for 6+PE pin connectors	49

Technical data

- electrical data | 24 |
- general technical data | 21 |
- hydraulic data | 22 |
- Temperature, allowable ambient temperature: -20°C to 60°C | 21 |
- hydraulic fluid: -20°C to 80°C | 21 |
- Threshold: < 0.1 % | 22 |

Tightening torque

- of installation screws for the valve:
 - quality class 10.9: 6.8 Nm (60.2 lb-in) ±10 % | 32 |
 - quality class 12.9: 10 Nm (89 lb-in) ±10 % | 32 |
- of the valve's venting screw: 10 Nm (89 lb-in) | 43 |

Tools for 6+PE pin connectors

- Recommended tools for communication via the CAN bus:
 - 500 kbit/s | 44 |
 - transmission rates in CAN networks | 39 |

Transport

- transport damages | 29 |
- transport packaging | 29 |

Transport (only with attached shipping plate)

- Trouble shooting | 47, 48 |
- communication problems in CAN networks | 48 |
- control circuit oscillating | 47 |
- leak at the linear force motor's plug | 47 |
- leak at the valve's connection surface | 47 |
- system unstable | 47 |
- valve exhibits no hydraulic reaction | 47 |

Valve electronics

- command signal ramping | 11 |
- dead band compensation | 11 |
- for driving the linear force motor | 9 |
- performing device-specific and drive-specific functions | 11 |
- self-test after power supply is switched on | 18 |
- spool position command is the input signal | 9 |

VDMA

- Address | 52 |
- is the abbreviation for Verband deutscher Maschinen- und Anlagenbau e. V. (German Machinery and Plant Manufacturers’ Association) | 4 |

Venting screw

- for venting the valve | 43 |
- in the representative depiction of the valve | 8 |
- tightening torque: 10 Nm (89 lb-in) | 43 |

Venting the valve

- procedure | 43 |
- required tools: 5 mm Allen wrench | 43 |

Vibration resistance:

- 30g, 3 axes, frequency: 5–2,000 Hz | 21 |

Viscosity

- allowable viscosity for hydraulic fluid: 5–400 mm²/s | 21 |
- recommended viscosity for hydraulic fluid: 15–100 mm²/s | 21 |
- symbol: ν | 3 |

Volumetric flow

- see flow

Wiring the valve, see electrical connection of the valve

Z

Zero lap, see spool lap