

Focal Technologies Corporation A Moog Inc. Company 77 Frazee Avenue Dartmouth, Nova Scotia, Canada B3B 1Z4 Tel: (902)468-2263 | www.moog.com/focal

Model 923 Data Logger User Manual

 Document No.:
 923-0603-01

 Revision:
 2

 Author(s):
 R.Sawler

 Date of Issue:
 2017-04-24

MOOG PROPRIETARY AND CONFIDENTIAL INFORMATION

THIS TECHNICAL DATA/DRAWING/DOCUMENT CONTAINS INFORMATION THAT IS PROPRIETARY TO, AND IS THE EXPRESS PROPERTY OF MOOG INC., OR MOOG INC. SUBSIDIARIES EXCEPT AS EXPRESSLY GRANTED BY CONTRACT OR BY OPERATION OF LAW AND IS RESTRICTED TO USE BY ONLY MOOG EMPLOYEES AND OTHER PERSONS AUTHORIZED IN WRITING BY MOOG OR AS EXPRESSLY GRANTED BY CONTRACT OR BY OPERATION OF LAW. NO PORTION OF THIS DATA/DRAWING/DOCUMENT SHALL BE REPRODUCED OR DISCLOSED OR COPIED OR FURNISHED IN WHOLE OR IN PART TO OTHERS OR USED BY OTHERS FOR ANY PURPOSE WHATSOEVER EXCEPT AS SPECIFICALLY AUTHORIZED IN WRITING BY MOOG INC. OR MOOG INC. SUBSIDIARY.

Document Revision History

Document Revision	Details of Revision	Author(s)	Date [yyyy-mm-dd]
Rev 1	Initial release.	A. Cabrera	2015-08-10
Rev 2	 -Updated title page, headers and footers -Change all references of 4 analog channels to 2 -Update GUI images -Update board images to Rev4.0 -Update Analog Inputs section for 2 channel description -Add Adjustable Analog Input display to special features -Updated Serial Output Mode in Modbus table to show only Modbus RTU is supported 	R. Sawler	2017-04-24

Reference Documents

Document Number	Document Title and Description	
923-2004-00 Model 923 Data Logger Configuration Drawing		

TABLE OF CONTENTS

1.0	Introduction1-1			
2.0	Specifications			2-1
3.0	Prod	Product Description		
	3.1	Configu	uration Settings and Initial User Setup	3-2
		3.1.1	Configuration Settings	3-2
		3.1.2	Initial User Setup	3-3
	3.2	Data Lo	ogging	3-3
	3.3	Real Ti	me Clock (RTC)	3-3
	3.4	On-Boa	ard Sensors	3-4
		3.4.1	Temperature and Humidity Sensor	3-4
		3.4.2	3-Axis Accelerometer Sensor (Shock and Vibration)	3-4
		3.4.3	Ambient Light Sensor	3-4
		3.4.4	Rotation Sensor (Turns Counter and Speed)	3-4
	3.5	Interfac	ces	3-5
		3.5.1	Thermocouple Inputs	3-5
		3.5.2	Analog Inputs	3-5
4.0	Hard	ware		4-1
	4.1	Genera	al Board Handling	4-1
5.0	Elect	trical Co	onnectors and Pin Descriptions	5-1
	5.1	9-pin M	licro-D Power and Data Connector (J5)	5-1
	5.2	Thermo	ocouple Input Connectors (J6, J15)	5-1
	5.3	12-Pin	Analog Input Connector (J4)	5-2
6.0	Fund	tionality	y	6-1
	6.1	Serial D	Diagnostic Interface	6-1
		6.1.1	Modbus RTU	6-1
	6.2	Diagno	stics Software	6-2
		6.2.1	Overview	6-2
		6.2.2	Installation	6-3
		6.2.3	Application Usage	6-3
		6.2.4	Special Features	6-5
7.0	Regi	ster Ma	ps	7-1
	7.1	Modbus	s RTU Register Map	7-1
		7.1.1	On-board Sensor Registers	7-4
		7.1.2	Sensor Data Conversion	7-5

LIST OF TABLES

Table 2-1: Specifications	2-1
Table 3-1: Factory Default Card Configuration Settings (as-built)	3-2
Table 5-1: Connector/Mating Connector Part Numbers	5-1
Table 5-2: Micro-D (9-pin) Connector (J5) Pin out	5-1
Table 5-3: Thermocouple Input (3-pin) Connector (J6, J15) Pinout	5-1
Table 5-4: Analog Input (12-pin) Connector (J4) Pin out	5-2
Table 6-1: Modbus RTU Frame Format and 923-EDL Defaults	6-1

LIST OF FIGURES

Figure 1-1: Model 923 Electronic Data Logger Card	1-1
Figure 3-1: Model 923-EDL Part Locations	3-1
Figure 3-2: Model 923-EDL Typical Setup Connection Using a PC and Focal GUI	3-3
Figure 4-1: Model 923-EDL PCBA	4-1
Figure 5-1: Micro-D (9-pin) Power & Data Connector (J5)	5-1
Figure 5-2: Thermocouple Input Connectors (J6, J15)	5-1
Figure 5-3: 12-pin Analog Input Connector (J4)	5-2
Figure 6-1: 923-GUI	6-2
Figure 6-2: Connection Manager	6-3
Figure 6-3: Add a New Data Logger Configuration	6-4
Figure 6-4: 923-GUI – Reading the Data from Flash (Internal Log)	6-5
Figure 6-5: 923-GUI – File Read-back Function (Load Log)	6-8
Figure 6-6: 923-GUI – Alarm Configuration	6-9
Figure 6-7: 923-GUI – Time Synchronization of 923-EDL RTC's with PC	6-10
Figure 6-8: 923-GUI – ADC Controls	6-11
Figure 6-9: 923-GUI – Adjusted Analog Input	6-11

ACRONYMS AND ABBREVIATIONS

ADC	Analog to Digital Converter
CRC	Cyclic Redundancy Check
ECL	Emitter Coupled Logic (Vcc = 0V)
EIA	Electronic Industries Association
ESD	Electrostatic Discharge
ESR	Electrical Slip Ring
FORJ	Fiber Optic Rotary Joint
FPSO	Floating Production, Storage and Offloading
HUMS	Health and Usage Monitoring System
I/O	Input/output
IC	Integrated Circuit
kbps	Kilobits Per Second
LED	Light Emitting Diode
MB	Megabytes
Mbps	Megabits Per Second
NRZ	Non-Return to Zero (bit signaling format)
РСВ	Printed Circuit Board
РСВА	Printed Circuit Board Assembly
PECL	Positive Emitter Coupled Logic (Vcc = +5 V)
P/N	Part Number
RPM	Revolutions Per Minute
SMT	Surface Mount Technology
SPI	Serial Peripheral Interface
TDM	Time Division Multiplexer / Multiplexing
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver/Transmitter
uC	Microcontroller

1.0 Introduction

The Model 923 electronic data logger (923-EDL) is a compact and rugged data logging card used for product health monitoring in marine, industrial, and other harsh environments. When installed as an option in Focal[™] systems such as electrical slip rings (ESRs) and FPSOs, it provides real-time access to diagnostic information as well as data storage for offloading at a later time. Typically mounted at the end of a ring stack, the 923-EDL collects data from an array of on-board sensors and stores it in nonvolatile flash memory.

The 923-EDL on-board sensors are capable of measuring temperature, relative humidity, ambient light, shock, vibration and rotation. Logging the total number of slip ring rotations allows tracking of slip ring usage for better planning of maintenance intervals. The environmental data collected can be used to establish baseline operational parameters and trend monitoring can be used in a health and usage monitoring system (HUMS) to identify potential problems before they become major faults. In addition to the on-board sensors, the 923-EDL provides expansion connectors that can be used to interface with up to two (2) thermocouples and up to two (2) single-ended analog channels.

Users can access on-board diagnostic information in real time via an RS-485 serial link using the sample Focal[™] graphical user interface (GUI) software (based on the Microsoft[®] .NET Framework), or by using custom software configured as a Modbus RTU master device (e.g. ModScan32). A top view of the Model 923-EDL card is shown below.

Figure 1-1: Model 923 Electronic Data Logger Card

This user's manual and the appropriate reference documents should be reviewed prior to installation or reconfiguration of the data logger system. Refer to system installation drawings and Model 923 configuration drawings for specific installation details.

2.0 Specifications

ENVIRONMENTAL	VALUE	COMMENTS
Operating Temperature	-20°C to +70°C	
Storage Temperature	-40°C to +85°C	
Shock	30 g, 11 ms	Per ISO 13628-6 Q1 level
Vibration	5 g, 25 - 1000 Hz	Per ISO 13628-6 Q1 level
Humidity	5-95% RH	Non-condensing
MECHANICAL		
Dimensions	3.37" [86 mm] (NOM)	External diameter
Mounting	4 x #2 screw holes	Use with #2-56 standoffs
Weight	< 40 grams	
ELECTRICAL		
		+24 VDC nominal
Input Voltage	+15 to +30 VDC	Optional: +5 or +12 VDC (contact
		factory for details)
Current Draw	0.04 A (TYP)	With 24 VDC input
Power Dissipation	1.0 W (NOM), 2.0 W (MAX)	
Overvoltage Protection	36 VDC	
Reverse Polarity Protection	36 VDC	
Battery	3.3V lithium-lon rechargeable	For real-time clock only
SENSORS		
Temperature Sensor	-40°C to +100°C	Accuracy +/- 1 °C
Humidity Sensor	5 - 95 % RH	
Light Sensor	$\lambda = 300 \text{ to } 1000 \text{ nm}$	Wavelength range
3-axis Accelerometer	+/- 200 g	
Potation Sonoor	Direction (CW, CCW), speed	
Rotation Sensor	(rpm) and total revolutions	
Real Time Clock Accuracy	+/- 5 ppm	
Logging Flash Memory Size	32 MB	14 years logging at 60 min log interval
Thermocouple	-40°C to +100°C	K-type thermocouple
4 x Analog Input	0 to +3 VDC	10 bit, 200 Hz sampling
INTERFACES		
Diagnostic and control	2-wire RS-485 serial interface with ISO ground	115.2 Kbaud, Modbus RTU

Table 2-1: Specifications

3.0 Product Description

The 923-EDL card provides an array of on-board sensors and interfaces for external sensors. The card is typically installed at the factory inside Focal[™] rotary products such as ESRs and FPSOs. With power applied to the 923-EDL, sensor data is logged automatically to on-board flash memory and simultaneously available in real time via an RS-485 serial link (J5) to a remote location. Key part locations are shown below.

REF.	DESCRIPTION (CONNECTORS)	REF.	DESCRIPTION (OTHERS)
J4	1 x 12-PIN CONN. FOR 2 x ANALOG INPUTS (SINGLE-ENDED)	B1	3.3V LITHIUM-ION RECHARGEABLE BATTERY
J5	1 x 9-PIN MICRO-D CONNECTOR FOR POWER AND DIAGNOSTICS (RS-485)	SW1, SW2	FACTORY USE ONLY
J6, J15	2 x 3 PIN THERMOCOUPLE INTERFACES		
J3, J7, J10	FACTORY USE ONLY		

3.1 Configuration Settings and Initial User Setup

The 923-EDL cards are configured at the factory and the user does not need perform any additional card configuration settings to start operating the card and obtain diagnostics data.

3.1.1 Configuration Settings

Table 3-1: Factory Default Card Configuration Settings (as-built)

Name	Parameter	Default Setting		
Diagnostics Port	Diagnostics Port (J5) (Hardware)			
Serial	Interface	RS-485		
Termination On-board 120 ohm Terminator Enabled / Disabled		120 ohm terminator enabled (installed)		
On-Board Dip Switches SW1/2 (Hardware)				
SW1	Data port serial protocol	RS-485 (SW1[1:2] = ON, ON)		
SW2	Data port serial protocol	RS-485 (SW2[1:2] = ON, ON)		
Diagnostics (soft	ware)			
	Frame Format	RTU		
	Node	1		
Modbus	Baud Rate	115,200 Baud		
	Supported Function Codes	Function Code 3: Read Holding Registers Function Code 6: Write Single Holding Register (other codes are not available)		

User defined parameters via the diagnostics port:

- Log interval (1 120 minutes)
- Node ID (1 255)

3.1.2 Initial User Setup

The only initial user setup requirement to start logging sensor data is to power up the 923-EDL card with +24 VDC (nominal). In order to access real-time sensor data the user can connect to the card via the RS-485 port using the sample Focal[™] GUI as shown in the figure below or a 3rd party Modbus RTU software configured as a master.

Figure 3-2: Model 923-EDL Typical Setup Connection Using a PC and Focal GUI

3.2 Data Logging

The 923-EDL uses a proprietary logging algorithm that enables the card to compute the maximum, minimum and average measurement of all the sensor parameters within the specified log interval. This allows the user to select longer log intervals without losing sight of critical events within the specified log interval. The data logging interval can be set between 1 to 120 minutes and it can be changed by the user by using Focal's GUI software through the data port J5.

The data obtained from the sensors is stored in the card's on-board 32 MB flash memory. This memory size allows up to 14 years' worth data to be stored when the log interval is set to 60 minutes.

3.3 Real Time Clock (RTC)

The 923-EDL has an on-board a real time clock (RTC) with an accuracy of ± 5 ppm. An on-board, 3.3V rechargeable lithium-ion battery (B1) maintains the correct time even when the card is not powered for a period of up to four months. This real time clock is used as the time stamp when logging the sensor data into on-board flash memory. The time stamp will be reset to factory default if the battery has been drained – any data logged to the flash memory with a dead battery will be accurate, but the time stamp will start at 01/01/2000 00:00:00 (dd/mm/yyyy hh:mm:ss).

The on-board battery is recharged while the board is powered on. Note that the battery is intended solely to keep the RTC running, not to operate the entire data logger. Normally the RTC is operation even when there is no power applied to the card.

Note: The RTC is normally synchronized with a PC's clock. The factory clock used to synchronize the RTC has a time zone of UTC-04:00 (Atlantic Time Canada) and when connecting to the card using the sample GUI, the user will be prompted with the option to re-sync the RTC with the local PC or keep the factory default values. It is recommended to re-synchronize the RTC at the time of final system installation.

3.4 On-Board Sensors

The specifications for the on-board sensors of the Model 923-EDL card are given in section 2.0 of this document.

The 923-EDL obtains a new sample from the on-board sensors every 5 ms. Note that the accuracy of the temperature and humidity is for the sensors themselves and corresponds to the immediate vicinity of the sensors, which may deviate from the ambient air conditions inside the rotary product.

The card starts logging data at a user-defined log interval (1 to 120 minutes) as soon as it gets powered. After power-up the card calculates the maximum, minimum and average values read from all the sensors during the specified log interval and then saves this data to the on-board flash memory with a time stamp from the on-board real-time clock (RTC).

The real-time sensor data and the sensor data saved in flash can be accessed (downloaded) from the diagnostics port (J5) using the sample GUI (P/N: 923-0403-00) or using custom software configured as Modbus RTU master. The real-time raw data (non-formatted) of the on-board sensors is stored in Modbus registers.

Refer to section 7.0 of this document for details on how to convert Modbus sensor raw data into analog values for all the on-board sensors.

3.4.1 Temperature and Humidity Sensor

The card uses a capacitive type humidity sensor with integrated temperature sensor. A protective cap is placed over the sensor.

Do not expose the sensor to solvents or other corrosive liquids.

3.4.2 3-Axis Accelerometer Sensor (Shock and Vibration)

The 3-axis accelerometer provides measurements up to ± 200 g. This sensor measures both dynamic acceleration resulting from motion or shock and static acceleration, such as gravity. Shock and vibration data obtained from this sensor are saved in the on-board flash memory and also into Modbus registers. The X, Y and Z direction raw values are stored as 16-bit values. The shock events are logged into the flash memory as 32 data points per axis (10 data points before the event and 22 data points after the event).

3.4.3 Ambient Light Sensor

The light sensor used is capable of operating in the infrared and visible light spectrum. Illuminance (ambient light level) in lux is derived using an empirical formula to approximate the human-eye response.

The illuminance measured is stored as a 16-bit raw value in Modbus registers for real-time diagnostics and it is stored as formatted data (lux) in the on-board flash.

Refer to the Modbus register map section of this document for details on the formulas to obtain the lux values.

3.4.4 Rotation Sensor (Turns Counter and Speed)

The on-board rotation sensor is used to measure the direction (CW and CCW), speed (rpm) and total revolutions. This sensor requires custom hardware and is currently intended to be used with Focal rotary products. Contact the factory for more details.

3.5 Interfaces

3.5.1 Thermocouple Inputs

The 923-EDL allows two (2) K-type thermocouples to be connected to 3 pin connectors J6 and J15. The card performs cold-junction compensation and the data output of each thermocouple is saved as an IEEE-754 32-bit floating point value in Modbus registers and also saved in the on-board flash memory.

3.5.2 Analog Inputs

The 923-EDL provides access to two (2) single-ended analog inputs via the 12-pin connector J4. The default input voltage range is dependent on a factory configurable resistor divider for each channel. The default configuration yields a maximum input on channel 1 of 14.76V. The maximum input on channel 2 is 4.95V.

Applying higher voltages to the analog channels could damage the analog input circuits.

The resolution of the ADC is 10-bit and the data is sampled at 200 Hz. Each ADC channel is calibrated at the factory using a scale factor (saved as an IEEE-754 32-bit floating point). The data output of each ADC and the scaler is stored in Modbus registers and in the on-board flash memory.

4.0 Hardware

The Model 923-EDL card has a 923-0203-00 PCB assembly (PCBA). The PCBA has an external diameter of 3.37" [8.55 cm] (nom) and an internal diameter of 1.43" [3.63 cm] (nom). The card assembly is typically installed on Focal[™] rotary products such as electrical slip rings (ESRs) and FPSOs.

This PCBA is designed for interfacing with a 9-pin Micro-D connector, which is used to provide power to the card and access real-time and stored diagnostics information.

Top and side views of the Model 923-EDL PCBA are shown in the figure below. For more details, refer to configuration drawing 923-2004-00.

Figure 4-1: Model 923-EDL PCBA

4.1 General Board Handling

The PCBA does not require forced air convective cooling. Generally heat from the card is conducted through the mounting hardware.

Care must always be taken during the handling of PCBAs to ensure product integrity. The following guidelines should be adhered to in working with PCBAs:

- Always handle boards by the edges and do not touch any connectors or gold tabs.
- Handle boards at an ESD safe workstation with a clean surface.
- Never stack PCB assemblies on top of one another.
- Do not flex boards during handling or when mounted. The mounting surface needs to be flat and even such that the board is not flexed when bolted down.
- Do not cause unnecessary shock and vibration, such as dropping or rough handling of the boards.
- Do not expose light, temperature and humidity sensors to solvents or other corrosive liquids.

5.0 Electrical Connectors and Pin Descriptions

The 923-EDL card has three (3) connectors for customer access and a few others for factory programming and testing. A 9-pin Micro-D connector (J5) on the top side of the card provides access to the diagnostics data and is also used to power-up the board. Two three pin connectors (J6, J15) provide access to two thermocouple inputs, and a 12-pin receptacle (J4) provides access to two analog inputs.

Table 5-1: Connector/Mating Connector Part Numbe	ers
--	-----

Ref	Description	Manufacturer	Manufacturer Part Number	Mating Manufacturer Part Number
J5	9-Pin Micro-D	Molex	0836119006	ITT Cannon, MDM-9SSB, Micro-D,9-Pin, female
J4	12-Pin Rcpt. 0.100"	Samtec	CES-106-01-S-D	TSW-106-07-T-D

5.1 9-pin Micro-D Power and Data Connector (J5)

Pin locations and functions are shown below for the 9-pin Micro-D connector.

Figure 5-1: Micro-D (9-pin) Power & Data Connector (J5)

Pin	Function
1	RS-485+
2	RS-485-
3	ISO GND (for RS-485)
4	RESERVED
5	RESERVED
6	POWER
7	GND
8	RESERVED
9	RESERVED

Table 5-2: Micro-D (9-pin) Connector (J5) Pin out

5.2 Thermocouple Input Connectors (J6, J15)

The connectors used for thermocouple connections are shown below. The 3 holes have 0.100" spacing and the pinout described below. Thermocouple input 1 is connected to J6 and Thermocouple input 2 is connected to J15.

Table 5-3: Thermocouple Input (3-pin) Connector (J6, J15) Pinout

Pin	Function
1	Thermocouple T+
2	Thermocouple T-
3	Ground

Note: For K-type thermocouples T+ is the yellow wire T- is the red wire

Figure 5-2: Thermocouple Input Connectors (J6, J15)

5.3 12-Pin Analog Input Connector (J4)

Figure 5-3: 12-pin Analog Input Connector (J4)

Table 5-4:	Analog	Input	(12-pin)	Connecto	or (J4)
		Pin	out		

Pin	Function	
1	OPEN (DEFAULT) OPTIONAL: +12VOUT OR +5VOUT (WITH HW MODS)	
2	ANALOG INPUT CH1	
3	GND	
4	OPEN OPTIONAL: +12VOUT OR +5VOUT (WITH HW MODS) (DEFAULT +5V)	
5	ANALOG INPUT CH2	
6	GND	
7	GND	
8	RESERVED	
9	OPEN (DEFAULT) OPTIONAL: +12VOUT OR +5VOUT (WITH HW MODS)	
10	GND	
11	RESERVED	
12	OPEN (DEFAULT) OPTIONAL: +12VOUT OR +5VOUT (WITH HW MODS)	

6.0 Functionality

The main function of the Model 923-EDL card is to collect data from several on-board sensors and external interfaces and store it in the on-board non-volatile flash memory. The data collected can then be used for further analysis and evaluation of the environment in which the card is installed. The data stored in flash memory is saved as analog values and further processing is not required to convert raw sensor data into analog values, as this task is performed by the on-board microcontroller.

The Model 923 also supports in-field programming via the J5 port, which can be used for future firmware upgrades.

6.1 Serial Diagnostic Interface

Remotely accessible, real-time diagnostic data and status information is available from the 923-EDL via the port J5. This information can be used to determine current health and to analyze long-term trending of critical parameters of the system being monitored (e.g. to estimate the remaining life of a Focal rotary product).

Diagnostic and status information is retrieved from the following:

- 1. Temperature, humidity, accelerometer, ambient light and rotation sensors (details of these sensors are provided in section 3.4).
- 2. A bank of analog to digital converters (ADCs), which monitor board voltage rails.
- 3. Board information which includes serial number (S/N), data code, assembly number, firmware version, cause of reset and I2C error count.
- 4. On-board Flash memory information such as memory usage and current write pointer location.

The serial RS-485 interface (connector J5) of the 923-EDL operates in Modbus RTU mode.

6.1.1 Modbus RTU

The user can communicate with the 923-EDL using the Modbus RTU protocol over the serial RS-485 interface (J5). The default (as-built) settings are shown in the table below.

Name	Length (bits)	Function	Default Settings (923-EDL as-built)
Start	28	At least 3.5 character times of silence (mark condition)	28 bits min.
Address	8	Station (node) address	Node 1
Function	8	Indicates the function code	Function Code 3: Read Holding Registers Function Code 6: Write Single Holding Register (other codes are not available)
Data	n * 8	Data + length will be filled depending on the message type	All Modbus registers are 16-bit values
CRC	16	Cyclic Redundancy Check	CRC-16-ANSI (a.k.a. CRC-16-IBM)
End	28	At least 3.5 character times of silence between frames	28 bits min.

Table 6-1: Modbus RTU Frame Format and 923-EDL Defaults

Note: The default node address can be changed using the sample GUI.

6.2 Diagnostics Software

6.2.1 Overview

Focal-Moog has created a sample .NET graphical user interface (GUI) to work with the 923-EDL in Modbus RTU mode. The 923-GUI (P/N: 923-0403-00) uses a serial connection to retrieve data from the 923-EDL using the Modbus RTU protocol. The GUI presents all data readings on a single window, as shown in the figure below. Live graphs of temperature, humidity, ambient light, rotational speed, etc., are provided as well as live readings from all sensors. Additional board identification information, such as card serial number, date code, etc., is also included.

Note: The GUI screenshots shown in this document might be updated from time-to-time to reflect new features or information added to the software. Contact the factory to obtain the latest version of the GUI.

Figure 6-1: 923-GUI

6.2.2 Installation

System Requirements

- PC with Intel Pentium or AMD processor
- 256 MB of RAM
- 20 MB of available hard disk space for the application and documentation.
- Supported Operating Systems: Windows 7 (64-bit)
- .NET Framework (minimum version 4.0)
- CD-ROM or DVD drive or USB port (to download the GUI)
- PC with an available RS-485 serial COM port. Note: A USB-to-RS-485 converter might be used.

Installation Procedure

- 1. Copy the contents of the GUI folder to a local folder in your PC.
- 2. For example: C:\Focal\Model923\GUI\Release
- 3. Open the "Release" folder.
- 4. Double click on the executable *.exe file to run the Model 923 Diagnostic Software.

6.2.3 Application Usage

In order to establish a successful diagnostics connection with the 923-EDL, the card must be powered on (typically with +24V at connector J5) and the physical data communication link must be valid (also via the J5 connector). The connection between the PC and the card's J5 port is via an RS-485 serial link. If the PC does not have an RS-485 port, then an external converter can be used (e.g. a USB-to-RS-485 converter). The list of available serial ports and their descriptions can be found by opening the PC's device manager (e.g. WIN+R (run) \rightarrow devmgmt.msc).

6.2.3.1 Connection Manager

The communication parameters for each card must be configured using the Connection Manager. To remove a card configuration from the list, click the "X" button on the right of the card name. The Pen symbol can be clicked to edit the existing card configuration.

Figure 6-2: Connection Manager

6.2.3.2 Add a New Data Logger Configuration

To add a new card configuration to the list:

1. Click the button at the far left of the Connection Manager.

2. Enter a Description, Serial Port, Modbus Node and Refresh Interval for the new card, as depicted in the figure below.

3. Click "Save Configuration".

Model 9 Diagn	023 ostics					FO	CAL
💽 🏓 COM3:	Card Config						
 Piagnost ⊙ Log Infor 	Card Conlig mation \textcircled{O}	Temperature 📀 Humidity 📀 Ami Ana	Speed Acceleration Add a New Da Description: Serial Port: Modbus Node: Refresh Interval (ms):	atalogger Configu Card Config COM3 1 1000 Save Configuration	ration		
			Start Data Ref	resh Stop Data Ref	resh		
Notifications: (2)						Zoom	(100%)

Figure 6-3: Add a New Data Logger Configuration

Notes:

- 1. It is recommended to set the "refresh interval" to \geq 1000 ms.
- 2. The default node is 1.

6.2.3.3 Connect and Disconnect Diagnostic Communications

Start Data Refresh to begin retrieving data from the card.

Click Stop Data Refresh to disconnect from the card.

Note:

Click

If on start up a configuration tab is already open, the configuration shown corresponds to the last configuration used. This configuration may not apply for the current system. This could result in connection failures to the 923-EDL. It is recommended that on start-up, any existing and unknown configuration tabs are closed and new configurations are added or ensure the same configuration is always used.

6.2.4 Special Features

6.2.4.1 Log Download

The GUI gives the user the ability to offload all the data on the 923-EDL into a .csv file. The time taken for the data offload is dependent on the amount of flash memory used on the 923-EDL. An estimated time for offload is given for user convenience. A valid serial connection with the 923-EDL is required for this feature. Controls for this feature can be seen in the image below.

Figure 6-4: 923-GUI – Reading the Data from Flash (Internal Log)

6.2.4.1.1 Data Log File – Flash Memory Contents Example

File Name: 923DataLog_7_28_2015_11_48_27.csv

Static Data:

28/07/2015 - 11:48:39

Focal Technologies Model 923				
Cause of Last Reset	: Power-up			
Serial Number	: 10052055			
Date Code	: 2015-07-14			
Assembly Number	: 923-0203-00			
FW Version	: A0			
DataLog Interval	: 1 min			
Baud Rate	: 115200			
Number of Magnets in the Ro	otary Encoder : 36			
MODBUS Node ID	:1			
Accelerometer Range	: +\-200(g)			
+3.3V Supply	: 3.236 V			
+12V Supply	: 14.572 V			
Memory Usage	: 4.521%			
Output Format	: MODBUS RTU			
Total Rotations	: 4.417			
Total CW Rotations	: 2.444			
Total CCW Rotations	: 1.972			
Total Bytes : 1517312				
Read Time : 321.4(sec)				

Sensor Data:

Header	Data
Date	23/07/2015
Time	09:05:07
3.3v Rail Max(V)	3.279
3.3v Rail Min(V)	3.261
3.3v Rail Avg(V)	3.272
5.0v Rail Max(V)	4.868
5.0v Rail Min(V)	4.85
5.0v Rail Avg(V)	4.861
12.0v Rail Max(V)	11.894
12.0v Rail Min(V)	11.877
12.0v Rail Avg(V)	11.881
Thermocouple 1 Max(degC)	28
Thermocouple 1 Min(degC)	27.75
Thermocouple 1 Avg(DegC)	27.922
Thermocouple 2 Max(degC)	30.031
Thermocouple 2 Min(degC)	29.812
Thermocouple 2 Avg(DegC)	30.505
Temperature Max(degC)	27.19
Temperature Min(degC)	27.126
Temperature Avg(DegC)	27.168
Humidity Max(%)	46.031
Humidity Min(%)	45.596
Humidity Ava(%)	45.685

Header	Data
ADC0 Max	1.6395
ADC0 Min	1.6335
ADC0 Avg	1.6365
ADC1 Max	1.6395
ADC1 Min	1.6335
ADC1 Avg	1.6365
ADC2 Max	1.6395
ADC2 Min	1.6335
ADC2 Avg	1.6365
ADC3 Max	1.6395
ADC3 Min	1.6335
ADC3 Avg	1.6365
Speed Max(rpm)	10
Speed Min(rpm)	0
Speed Avg(rpm)	1
Total Rotations	4.194

Header	Data
Acclerometer X Max(g)	1.078
Acclerometer X Min(g)	-0.196
Acclerometer X Avg(g)	0.637
Acclerometer Y Max(g)	0.392
Acclerometer Y Min(g)	-1.078
Acclerometer Y Avg(g)	0.049
Acclerometer Z Max(g)	2.254
Acclerometer Z Min(g)	0.588
Acclerometer Z Avg(g)	1.715
Ambient Light Max(lux)	9.124
Ambient Light Min(lux)	9.091
Ambient Light Avg(lux)	9.124
Card Status	NORMAL

Note: The data shown above is the transposed version of the actual *.csv log file. The .csv file is formatted as follows:

Date	Time		Card Status
DD/MM/YYYY	hh:mm:ss		<status></status>
DD/MM/YYYY	hh:mm:ss		<status></status>
:	:	:	:

6.2.4.2 Local Logging to PC

Local logging allows the user to save the data displayed by the GUI software to a .csv file in the local PC. Local logging is stopped when the GUI is closed.

6.2.4.3 Log Read-back

The GUI also has the ability to load a saved .csv file into the presentation fields. The fields populated with data include temperature, humidity, light, speed, acceleration and voltage. This will allow the user to analyze past data for trends by viewing the loaded data in the graph windows. Additionally, the GUI will display the maximum and minimum sensor values which were recorded in the loaded data, allowing the user to see if any spikes or dips occurred while logging. This is not a real time play-back feature. All data will be loaded in one instance for viewing. A valid serial connection with the 923-EDL is not required to use this feature. Controls for this feature can be seen in the image below.

Figure 6-5: 923-GUI – File Read-back Function (Load Log)

6.2.4.4 Alarm Configurations

The GUI includes alarm levels for measured values. These alarm levels are configurable by the user in the alarms window shown in the figure below. Unsaved values are highlighted and current alarm levels can be restored at any point. The GUI provides the user the ability to change alarms, save alarm configurations as a .csv file, and upload previously saved alarm configuration files.

-						
M	1odel 923 Diagnostics					
Ŧ	💙 COM15: Card C	onfig 😰 🗷				
\bigcirc	Diagnostic Card					
info		High Alarm				Controls
ΓP		High Alarm	High warning	Low warning	LOW Alarm	Controis
Boar	Temperature	100	90	0	-10	Update
cro	Humidity	100	90	0	-10	Update
M	Light	50	40	10	5	Update
g Data	Speed	100	90	-1	-1	Update
Analog	+3.3 V	3.9	3.7	2.9	2.7	Update
sm	+5V	5.6	5.5	4.5	4.4	Update
Alan	+12V	12.5	12.4	11.6	11.5	Update
trols	Acceleration	10	9	-1	-10	Update
Con	Thermocouples	150	90	0	-15	Update
Statistics		Update All	Save Configuration	Upload Configuration	Restore Current Alarms	

Figure 6-6: 923-GUI -	- Alarm Configuration
-----------------------	-----------------------

The default alarm levels used on GUI start-up are saved in a configuration file stored in the same directory as the run file. The file containing the alarm levels can be edited in a text editor or Excel so that the same alarm levels are loaded on each startup. The configuration file must be saved in .csv format.

Alarm settings are saved in the local computer and are only applicable to the GUI – not the 923-EDL card. Any changes to the alarm values will only be reflected in the GUI, the 923 card will continue to operate normally regardless of the software alarm settings.

6.2.4.5 Time Synchronization

The 923-GUI allows the user to synchronize the 923-EDL real time clock (RTC) with the user's computer time. If time synchronization is enabled and a time discrepancy of greater than or equal to one (1) minute is measured, a prompt will be raised to ask the user if the 923-EDL RTC should be synchronized with the local computer (see figure below). By pressing "synchronize", the 923-EDL RTC will be synchronized with the PC clock and by pressing "Cancel" the time synchronization feature will be disabled. This window will timeout in 10 seconds and assume time synchronization is not desired.

Figure 6-7: 923-GUI – Time Synchronization of 923-EDL RTC's with PC

6.2.4.6 Adjustable Analog Input Display

The 923-GUI allows the user to setup a customizable view for each of the measured analog inputs. This customizable view will allow the user to display specific units and alarms for each channel as well as applying an equation to the measured voltage to convert or scale the reading to different units. For example, if a user had a temperature sensor connected to analog input 1 where the measured temperature was calculated using the equation below, the equation can be entered into the GUI and the temperature will be displayed in the "Adjusted" tab of the Analog Inputs expander.

$$T = (Vo * 3) + 32$$

The equation and units for each channel are edited in the ADC Controls tab of the Diagnostic Card expander. In this tab the user can also set alarm and warning levels for the adjusted value. The alarm levels, units and equation are saved for each channel in an .xml file in the GUI release folder named ADCEquations.xml. The values are loaded from the .xml file each time the GUI is opened. This feature is exclusively a software feature meaning the data logged to the 923-EDL will still be saved as raw analog counts. Examples of the adjusted ADC values can be seen in the images below.

	Scalar	0	Update
	Equation	(ADC*3)+32	Update
	Units	F	
ADC 1	High Alarm	80	
	High Warning	100	Save
	Low Warning	32	
	Low Alarm	20	

Figure 6-8: 923-GUI – ADC Controls

Figure 6-9: 923-GUI – Adjusted Analog Input

7.0 Register Maps

7.1 Modbus RTU Register Map

Board Dia	ignostics	s Inforn	nation	
Register Number	Bit	R/W	Description	Comments
40001	15:0	R	Serial Output Mode	0: Reserved 1: Reserved 2: Reserved 3: Modbus RTU Mode
40002	15:8	R	Month	
10000	7:0	R	Day	Date saved as ASCII
40003	15:0	R	Year	
40004	7.0	R	Seconds	-
	15.8	R	Reserved	Time saved as ASCII
40005	7:0	R	Hour	
40006	15:0	R	Log Interval	In minutes (1-120)
40007	15:0	R	3.3 V ADC	Voltage (V) = ModbusReg[40007] * 0.0058
40008	15:0	R	5 V ADC	Voltage (V) = ModbusReg[40008] * 0.0058
40009	15:0	R	12 V ADC	Voltage (V) = ModbusReg[40009] * 0.017578
40010	15:0	R	Reserved	Reserved
40011	15:0	R	Temperature Sensor	
40012	15:0	R	Humidity Sensor	-
40013	15:0	R	Light Sensor [1]	4
40014	15:0	R	Light Sensor [2]	-
40015	15.0	R		-
40010	15:0	R	Total Rotations [1]	
40018	15:0	R	Total Rotations [2]	4
40019	15:0	R	CW Rotations [1]	See "On-board Sensor Registers" section.
40020	15:0	R	CW Rotations [2]	
40021	15:0	R	CCW Rotations [1]	
40022	15:0	R	CCW Rotations [2]]
40023	15:0	R	Direction	
40024	15:0	R	Acceleration X	
40025	15:0	R	Acceleration Y	
40026	15:0	R	Acceleration Z	
40027	15:0	R	Micro Firmware Revision	
40028	15:0	R	Cause of Last Micro Reset	0: Power-Up 2: Watchdog 3: Software Power-up 4: User (NRST pin) 5: Brownout
40029	15:0	R	Number of Magnets	
40030	15:0	R	Reserved	
40031	15:0	R	Memory Pointer [1]	Current Location in the flash memory. This value does not include an offset at the beginning of the flash which stores
40032	15:0	R	Memory Pointer [2]	factory use code.
40033	15:0	R	Reserved	
40034	15:0	R	Reserved	
40035	15:0	R	I2C Error Counter	Reports the number of I2C errors occurred
40036	15:0	R	Reserved	
40037	15:0	R	Reserved	
40038	15:8	ĸ	Thermocouple 1 Byte 1	-
	15.9	Р	Thermocouple 1 Byte 2	4
40039	7.0		Thermocouple 1 Byte 2	Saved as IEEE 4 byte float value
	15.8	R	Thermocouple 2 Byte 1	(See "Sensor Data Conversion" section for details)
40040	7:0		Thermocouple 2 Byte 0	
10211	15:8	R	Thermocouple 2 Byte 3	-
40041	7:0		Thermocouple 2 Byte 2	1

Board Dia	Board Diagnostics Information						
Register Number	Bit	R/W	Description	Comments			
40042	15:0	R	Reserved				
40043	15:0	R	Analog Input Ch 1				
40044	15:8	R	Analog Input Ch 1 Scalar Byte 1				
40044	7:0	R	Analog Input Ch 1 Scalar Byte 0				
40045	15:0	R	Analog Input Ch 1 Scalar Byte 3				
40043	7:0	R	Analog Input Ch 1 Scalar Byte 2				
40046	15:0	R	Analog Input Ch 2				
40047	15:8	R	Analog Input Ch 2 Scalar Byte 1				
40047	7:0	R	Analog Input Ch 2 Scalar Byte 0				
40048	15:0	R	Analog Input Ch 2 Scalar Byte 3	See "On board Sensor Begisters" contian			
40048	7:0	R	Analog Input Ch 2 Scalar Byte 2				
40049	15:0	R	Reserved				
40050	15:8	R	Reserved				
40030	7:0	R	Reserved				
40051	15:0	R	Reserved				
40031	7:0	R	Reserved				
40052	15:0	R	Reserved				
40053	15:8	R	Reserved				
40000	7:0	R	Reserved				
40054	15:0	R	Reserved]			
40034	7:0	R	Reserved				
40055- 40229	15:0	R	Reserved				

Board Information Registers					
Register Number	Bit	R/W	Description	Comments	
40230	15:0	R	Serial Number [1]		
40231	15:0	R	Serial Number [2]		
40232	15:0	R	Serial Number [3]		
40233	15:0	R	Serial Number [4]	Carial Number	
40234	15:0	R	Serial Number [5]	Senar Number	
40235	15:0	R	Serial Number [6]		
40236	15:0	R	Serial Number [7]		
40237	15:0	R	Serial Number [8]		
40238	15:0	R	Date Code [1]		
40239	15:0	R	Date Code [2]		
40240	15:0	R	Date Code [3]		
40241	15:0	R	Date Code [4]	Dete Code	
40242	15:0	R	Date Code [5]	Date Code	
40243	15:0	R	Date Code [6]		
40244	15:0	R	Date Code [7]		
40245	15:0	R	Date Code [8]		
40246	15:0	R	Assembly Number [1]		
40247	15:0	R	Assembly Number [2]		
40248	15:0	R	Assembly Number [3]		
40249	15:0	R	Assembly Number [4]	Assembly Number	
40250	15:0	R	Assembly Number [5]	Assembly Number	
40251	15:0	R	Assembly Number [6]		
40252	15:0	R	Assembly Number [7]		
40253	15:0	R	Assembly Number [8]		
40254	15:0	R	PCB Number [1]		
40255	15:0	R	PCB Number [2]		
40256	15:0	R	PCB Number [3]		
40257	15:0	R	PCB Number [4]	DCB Number	
40258	15:0	R	PCB Number [5]		
40259	15:0	R	PCB Number [6]		
40260	15:0	R	PCB Number [7]		
40261	15:0	R	PCB Number [8]		
40262-	15:0	R	Reserved		
40517	45.0				
40518	15:0	R	Log File Size Lower	32 bit value saved as ASCII	
40519	15:0	R	Log File Size Upper		
40520- 40799	15:0	R	Reserved		

Shock Event Registers					
Register Number	Bit	R/W	Description	Comments	
40900	15:8	R	Stored Max Shock Value Byte 1		
40000	7:0	R	Stored Max Shock Value Byte 0		
40801	15:8	R	Stored Max Shock Value Byte 3	May about from most recent about quant	
40001	7:0	R	Stored Max Shock Value Byte 2	Nax shock from most recent shock event.	
40902	15:8	R	Current Max Shock Value Byte 1	Saveu as IEEE 4 byte itoat value.	
40602	7:0	R	Current Max Shock Value Byte 0		
40902	15:8	R	Current Max Shock Value Byte 3		
40603	7:0		Current Max Shock Value Byte 2		
40804- 40809	15:0	R	Reserved		
40810- 40841	15:0	R	Shock Event X Data 0-31		
40842- 40873	15:0	R	Shock Event Y Data 0-31	See "On-board Sensor Registers" section.	
40874- 40909	15:0	R	Shock Event Z Data 0-31		
40910- 41050	15:0	R	Reserved		

7.1.1 On-board Sensor Registers

On-board	On-board Sensor Information					
Register	Bit	R/W		Description		
Number						
Temperat	ure Sens	sor				
40011	15:0	R	Temperature Sensor			
Equation				Example: Temp = 27.94 degC		
Temp =	Temp = (ModbusReg[40011] * 0.0026812) - 46.5			Temperature = (27764 * 0.0026812) - 46.5 = 27.94		
Humidity	Sensor					
40012	15:0	R	Humidity Sensor			
Equation				Example: Humidity = 41.90%		
Humidity	y = (Mo	dbusRe	eg[40012] * 0.0019073) - 6	Humidity = (25112 * 0.0019073) - 6 = 41.90		
Light Sen	sor	1	1			
40013	15:0	R	Light Sensor [1] (Ch1)			
40014	15:0	R	Light Sensor [2] (Ch2)			
Equations		_		Example: Lum = 46.35 lux		
Ratio =	Ch2/Ch	1		Ch1 = 1748		
II U S F	(atio ≥	0.52		CHZ = 319		
(0.0315*	Ch1)-(0.0539	9*Ch1*((Ch2/Ch1)^1.4))	Ratio = 0.182494283		
If 0.52	≤ Rati	o ≤ 0.	.65:	Luminance		
Luminanc	ce = (0	.0229'	*Ch1)-(0.0291*Ch2)	= (0.0315 * 1748)-(0.0539 * 1748 * (Ratio^1.4)) = 46.35		
If 0.65	≤ Rati	o ≤ 0.	.80			
Luminanc	ce = (0	.0157,	Ch1)-(0.0180* Ch2)			
If 0.80	≤ Rati	o ≤ 1.	.30			
Luminanc	ce = (0)	.00338	3*Ch1)-(0.00260* Ch2)			
TE Dotio	× 1 2	0				
II Katio	$\gamma = 1.3$	0				
Duminiano						
Rotation S	Sensor (Turns (Counter and Speed)			
40015	15:0	R	RPM[1] (bits 15:0)	Equations:		
40016	15:0	R	RPM [2] (bits 31:16)	Formatted Data = Raw Data		
40017	15:0	R	Total Rotations [1]	Big endian.		
40018	15:0	R	Total Rotations [2]	Example:		
40019	15:0	R	Clockwise Rotations [1]	The Modbus 32-bit value is already formatted and		
40020	15:0	R	Clockwise Rotations [2]	no further conversion is required.		
40021	15:0	R	Counter Clockwise Rotations [1]	1		
40022	15:0	R	Counter Clockwise Rotations [2]	1		
	15:8		Reserved			
	7	1	Reserved	1		
	6	_	Reserved	1		
	5	R	Reserved	Reserved		
40023	4		Reserved	-		
	3		Reserved	-		
	2	R	Counter Clockwise Rotation	1=CCR detected. $0 = CCR$ not detected		
	1	R	Clockwise Rotation	1=CR detected, 0 = CR not detected		
	0	R	No Rotation	1=No Rotation detected, 0 = Rotation detected		
3-Axis Ac	celerom	eter (S	hock and Vibration Sensor)			
40024	15.0	R	Acceleration X			
40025	15:0	R	Acceleration Y			
40026	15:0	R	Acceleration Z			
40810-	15:0	R	Shock Event X,Y,Z Data 0-31			
40909						

On-board Sensor Information					
Register Number	Bit	R/W	Description		
Equation				Example: Acceleration = 0.748 g	
Raw = ModbusReg[xxxxx]					
If Raw > 32768				Raw = 16	
Accel	. = (65	536 -	Raw) * 0.049 * -1	Accel = 16 * 0.049	
Else				= 0.748	
Accel = Raw * 0.049					

On-board Sensor Information					
Register Number	Bit	R/W	Description		
ADC Exte	rnal Inpu	uts CH1	– CH4		
40043- 40054	15:0	R	Analog Input and Scalar Values for Channels 1-4		
Voltage	(V) =			Example: Voltage = 1.65V	
AnalogInputChX * AnalogInputScalarChx Where ChX = Ch1,Ch2 AnalogInputScalarChx = BytesToFloat(AnalogInputChX_ScalarByte3, AnalogInputChX_ScalarByte2, AnalogInputChX_ScalarByte1, AnalogInputChX_ScalarByte0) See "Sensor Data Conversion" section for		<pre>logInputScalarChx = .rByte3, .rByte2, .rByte1, .rByte0) .version" section for</pre>	<pre>Scalar = BytesToFloat(0x3B, 0x40, 0x30, 0x06)</pre>		
details.					

7.1.2 Sensor Data Conversion

7.1.2.1 IEEE 4 Byte Float Conversion (Bytes to Float)

```
BytesToFloat(byte3, byte2, byte1, byte0):
temp = (byte3<<24) | (byte2<<16) | (byte1<<8) | (byte0)
mantissa = (1 + (temp & 0x007FFFFF) * (2^-23))
exp = ((temp & 0x7F800000) >> 23) - 127
isPos = (((temp & 0x80000000) >> 31) == 0)
If isPos:
    Float = (2^exp) * mantissa
Else:
    Float = (-1 * ((2^exp) * mantissa))
```