ELECTROMECHANICAL ACTUATION FOR LAUNCH VEHICLES

Presented By:
Mark A. Davis
Moog Inc.

37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
Salt Lake City, Utah
July 10, 2001
This paper describes recent developments in Electromechanical Actuation applied to Launch Vehicles. The following topics are discussed:

- Electromechanical (EM) Actuation System Design
- Comparison of Electromechanical and Electrohydraulic Actuation Systems
- High Power EM Thrust Vector Control (TVC) Systems
- Redundant EM TVC Systems
- Propellant Valve Electromechanical Actuation
Electromechanical TVC Actuation System
Electromechanical Servoactuator System

Permanent Magnet Brushless Motor
Sinusoidal Motor Drive

MOOG
Comparison of EM and EH Actuation Systems

advantages of conventional electrohydraulic systems

- Mature Technology
- High Reliability
- Can Use Relief Valves to Limit Piston Force
 - Effective to Handle Impulse Load
- Continuous Stall Torque Capability
- High Acceleration Capability
- No EMI Generation
- Simple, Low Power Electronics
- Mature Redundancy Implementation
Comparison of EM and EH Actuation Systems

Advantages of Electromechanical Systems

- Excellent Long-Term Storability
- Easy Checkout
- Easy Installation
- Low Maintenance
- Minimal Operations Cost
- Low Quiescent Power
- No Fluid Leakage
- No Concern for Fluid Contamination
- High Reliability
- Lower Weight than Hydraulic Blowdown TVC Systems
Limitation of EM Actuation Systems

Typical EM System Frequency Response Limits
38 HP EM TVC ACTUATOR Dual Torque-Summed Motors

Output Travel……… +/- 5.5 in
Stall Force ……….. 55,000 lb
Rated Power………. 38 HP
 Output Force…….. 48,000 lb
 Output Velocity….. 5.2 in/sec
Impulse Load ……. 100,000 lb
Acceleration………60 in/sec^2
Duty Cycle………..10 min
Average Load… 15,000 lb
Supply Voltage….270 VDC

Full Performance with one motor
38 HP EM Actuation System

Force-Velocity Test Data On SSME Test Fixture

![Graph showing force-velocity test data on SSME test fixture](image)
Frequency Response Test Data On SSME Simulator
Load Position Response (+/- 2 % COMMAND)
Frequency Response Test Data On SSME Simulator

Load Position Response (+/- 5 % Command)
◆ Controller Critical to Performance of EM Systems

◆ Breadboard Controller Used to Demonstrate 38 HP EM TVC System

◆ Development of Flight Worthy High Power EM Controller
Moog DSP-Based Digital Controller

- Digital Loop Closure
- IGBT Power Stage
- 320 VDC Maximum Supply Voltage
- 200 Amps Peak Motor Phase Current
- Vector Control / Sinusoidal Motor Drive
- Demonstrated with a 20 HP EM TVC Actuator
Two TVC Actuators Have Been Demonstrated

<table>
<thead>
<tr>
<th></th>
<th>12 HP</th>
<th>21 HP</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stall Force (lb)</td>
<td>4600</td>
<td>31,000</td>
<td>Brushless PM Motor</td>
</tr>
<tr>
<td>Stroke (in)</td>
<td>+/- 1.92</td>
<td>+/- 1.5</td>
<td>Ballscrew</td>
</tr>
<tr>
<td>Length (in)</td>
<td>15.5</td>
<td>17.0</td>
<td>LVDT</td>
</tr>
<tr>
<td>Power Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity (in/sec)</td>
<td>20</td>
<td>5.85</td>
<td></td>
</tr>
<tr>
<td>Force (lb)</td>
<td>4000</td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>16</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Voltage (VDC)</td>
<td>280</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>
Upper Stage Redundant EM TVC Systems

- Flight Proven
- Active-Standby Redundancy
- Full Performance with one motor operating
- Six-Step Motor Drive
Upper Stage Redundant EM TVC Systems

Typical Performance Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>+/- 0.75 in</td>
</tr>
<tr>
<td>Stall Force</td>
<td>2000 lb</td>
</tr>
<tr>
<td>No-load Velocity</td>
<td>3.0 in/sec</td>
</tr>
<tr>
<td>Output Power</td>
<td>0.4 HP</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>90 deg phase @ 4.3 Hz</td>
</tr>
<tr>
<td>Actuator Length</td>
<td>23.25 in</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>28 VDC</td>
</tr>
<tr>
<td>Electrical Interface</td>
<td>MIL-STD-1553</td>
</tr>
<tr>
<td>Actuator Weight</td>
<td>17 lb each</td>
</tr>
<tr>
<td>Controller Weight</td>
<td>27 lb</td>
</tr>
</tbody>
</table>
Upper Stage TVC System Block Diagram

Active-Standby Redundancy
Full Performance With One Motor Operating
Propellant Valve EM Actuation Systems

- Dual Redundant Brushless Motors
- Harmonic Drive Provides Rotary Output
- Redundant Controller

Typical Performance
Stroke………………+/- 70 deg
Output Power.........0.05 HP
 Velocity.........340 deg/sec
 Torque…………..60 in-lb
Actuator Weight……8.2 lb
Controller Weight….21.3 lb
Voltage28 VDC
Summary

- Electromechanical Actuation is a Reality for Launch Vehicles
 - **Flight Proven** EM TVC Systems on Upper Stages
- High Power Applications (Booster TVC Systems)
 - EM Actuation is a Viable Alternative to Electrohydraulic Actuation
 - High Power EM TVC Systems are **Flight Ready**
 - EM TVC Systems Offer the Potential of:
 - Lower Life Cycle Cost
 - Lower Weight