SPECIFICATIONS

Inputs:

Three individual inputs on terminals
1,3 and 4.
$>$ Input impedance can be determined by assuming pin 2 of A1A is grounded.
\Rightarrow Input trip levels (at terminals 3 or 4) can be set from ± 0.05 to $\pm 1.0 \mathrm{VDC}$ with approximately 5% turn-off hysteresis.
$>$ Input signals to ± 100 volts (will not harm circuit).
Differential input can be provided
between terminals 3 and 4 .
$>$ Remove R3; remove D1 and D2
$>$ Make R2 $=$ R4 and R1 $=$ R8 using resistors of $10 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$.

Outputs:

Relay K1 and transistor Q 10 N for inputs above + switching level. Relay K2 and transistor Q 20 N for inputs below - switching level.

The N 123-136 DC Level Detector provides on/off switching outputs that
are tripped at setable levels of the $D C$ input (usually one + level and one -).
LED's provide visual indication of switching.Typical applications include
set-point detection, null detection and "bang-bang" servocontrol.

Contact ratings < 5 amp resistive at 24 VDC or $<2 \mathrm{amp}$ resistive at 115 VAC .
Transistor rating is 100 mA at 24 VDC .
For + and - switching from one input, connect terminal 9 to terminal 10 and use K1 or K2 contacts.

Drift:

(referred to input at terminal 3 or 4)
$< \pm 0.15 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

Transient Response:

Relay response:
Fast-on/fast-off $=10 \mathrm{~ms} / 15 \mathrm{~ms}$
Slow-on/fast-off $=100 \mathrm{~ms} / 15 \mathrm{~ms}$
Slow-on/slow-off $=100 \mathrm{~ms} / 105 \mathrm{~ms}$
Transistor response:
Fast-on/fast-off $=0.3 \mathrm{~ms} / 0.3 \mathrm{~ms}$
Slow-on/slow-off $=90 \mathrm{~ms} / 90 \mathrm{~ms}$
O ther slow times by selection of
C4\&C5.

Power Required:

$\pm 15 \mathrm{VDC}$ at $\pm 14 \mathrm{mADC}$, regulated,
3-wire
$(\pm E)$ at terminals 5,6 , and 7 and;
+14 VDC to +22 VDC , unregulated,
3 -wire
$(+V)$ at terminal 13.
This power is available from Model
N 121-132A Snap Trac Servocontroller.

3.25 in x 7.50 in long

Maximum Component Height: 1.27 in

N123-136 DC LEVEL DETECTOR SCHEMATIC

NOTES:

1 N.C.- Normally Clo Sed Contact N.O.- NORMALLY OPEN CONTACT

2 SEE OUTPUT SPECIFICATIONS
3. NF - NOT FURNISHED
4. ■ - PIN 1 (SQ UARE PIN)
5. \because - INDICATES COMPONENT STANDOFF
6. CW - CLOCKW ISE
7. 'ILLUMINATED' LED'S FOR K1AND K2 INDICATES RELAY IS ACTIVATED OR EN ERGIZED.
8 DIODES D1AND D2 PROTECT STAGEAIA FROM IN ADVERTENT OVER-SIGNAL CONDITIO NS. W HEN AIA IS USED ASA DIFFEREN TIAL AMPLIFIER (R3 REMOVED, SUITABLE RESISTO R R2 IN SERTED), DIODES D1AND D2 SHOULD BE REMOVED.

CIRCUITRY

The input for signal level detection is applied at terminal 3 or 4 . Alternatively, a differential signal may be applied to terminals 3,4 after making suitable resistor changes.

W hen this level detector is used as a set point detector or "bangbang" servoamplifier, the feedback signal should be applied to terminal 3 or 4 with the command applied to terminal 1 . Summation of the inputs is provided by amplifier A1A with gain adjustment from amplifier A1B.

Amplifiers A 2A and A2C are biased so that their outputs are saturated positive and negative, respectively, for zero signal inputs. These biases are approximately -1.1 VDC at pin 13 and $\pm 1.1 \mathrm{VDC}$ at pin 2 of A2C.Therefore, A 2 A will switch negative when pin 7 of A1B goes more negative than -1.1VDC. Likewise, A2C will switch positive when pin 7 of $A 1 B$ goes more positive than 1.1 VDC. Switching of A2A negative turns on relay K1 through driving transistor Q 1. Switching of A2C positive turns on relay K2.

O utputs to a normally open and normally closed set of contacts are provided at terminals 17, 18 and 19 for K2.

LED 's DS1 and DS2 are turned on when their respective relays, K1 and $K 2$ are energized.Terminals 8 and 11 can be used for remote placement of relay indicators.

Components D 4-C 4 and D8-C5
provide time delay in the on/off switching of relays K1 and K2, respectively.

- slow on, fast off - schematic as shown.
- slow on, slow off - remove D4 and D8.
- fast on, slow off - reverse D4 and D8.
- fast on, fast off
-remove C4, C5, D4, and D8.
Logic compatible outputs from
Q 1 and Q 2 can be used for passive pull-downs in a remote logic circuit. Remove D6, D10, R20, R21, R22, R28, R29 and R30. Use terminals 9 and 10 for logic outputs.

ADJUSTMENTS

Scale (R5) - adjusts sensitivity of input signal at terminal 1 from 0 to 110% of the input on terminal 3 or 4.

Level (R13) - provides 21:1 range of trip level setting.

Symmetry (R7) - adjusts symmetry between + and - trip levels.

MOUNTING:
Mount using Curtiss type TR-3
plastic track (Moog P/N 65419-1)

FEATURES

$>$	VSUM - Test point
$>$	VLEVEL - Test point (gain)
$>$	$C H 1-$ Test point
$>$	$\mathrm{CH} 2-$ Test point
$>$	$\mathrm{TP} 6-$ Test point (common)
$>$	Jl to $\mathrm{J} 4-0 \Omega$ Jumpers
	(factory installed)

$>$ VLEVEL - Test point (gain)
$>\mathrm{CHI}$ - Test point
$>\mathrm{CH} 2$ - Test point
> TP6 - Test point (common)
$>\mathrm{J} 1$ to $\mathrm{J} 4-0 \Omega$ Jumpers (factory installed)

K1/K2 RELAY OPERATION

Apply +15 VDC to P2-13 and +10VDC to P1-4.Adjust SCALE pot (R5) full CCW and LEVEL pot (R13) full CCW. Monitor voltage at VLEVEL - Test Point. Adjust voltage source at P1-4. LED 'DS2' will light-up and K2 energizes when voltage at VLEVEL is $>+1.1 \mathrm{VDC}$ (more positive). Adjust voltage source at P1-4. LED 'DS1' will light-up and K1 energizes when VLEVEL is >-1.1VDC (more negative).

POSITION SERVO CONTROL WITH RAPIDTRAVERSE

Model N 123-136 DC Level Detector may be used in a Position Servo application with Rapid Traverse.A 4-way solenoid valve is used, along with the Level Detector, to obtain the high flow of a large valve while maintaining the precise positioning of a lower flow servovalve. Model N 121-132A Servo controller card is used as a proportional servoamplifier driving a low-flow servovalve to obtain 'accurate' positioning of the actuator.W hen point-to-point commands become sufficiently large (adjustable by level pots), N 123-136 activates the appropriate relay (K1 or K2). This energizes a 4 -way solenoid valve which provides high-flow to the actuator. The response time of the solenoid valve must respond quickly to be compatible with the system dynamic requirements.

Industrial Controls Division
Moog Inc., East Aurora, NY 14052-0018
Telephone: 716/655-3000
Fax: 716/655-1803
Toll Free: 1-800-272-MO O G

