SPECIFICATIONS

Inputs

4 per C hannel.
Each input may be attached to either an inverting or non-inverting op-amp input.

Input Impedance:

Two inputs have fixed input resistors ($100 \mathrm{k} \Omega$ supplied); two inputs each have a fixed resistor ($51.1 \mathrm{k} \Omega$ supplied) plus a 20 -turn, $100 \mathrm{k} \Omega$ potentiometer.

Signal levels:

± 100 to $\pm 100 \mathrm{VDC}$, depending on configuration.

The N F123-158B1 Auxiliary Amplifier circuit card is designed to easily accommodate the special needs of unique control systems. The flexibility of this card provides the Control Engineer with a tool to design custom circuits not available in standard cards. Typical applications include buffers, summing amplifiers, differential amplifiers, oscillators, compensators, current-to-voltage converters, and dither generators.

The N F123-158B1 Auxiliary Amplifier Card is a forward compatible replacement for the F123-158-A001.

FEATURES

Flexible Configuration Options:

Each channel may be configured for any standard op-amp circuit: inverting amplifier, non-inverting amplifier, differential amplifier, inverting summing amplifier with up to 4 inputs, non-inverting summing amplifier with up to 4 inputs, current-to-voltage converter, differentiator, integrator, compensation, oscillator, etc.

Configuration of the printed-circuit board traces is accomplished through simple jumpers.

Four Independent Channels:

May be configured identically for multi-channel operations or uniquely for cascaded operations.

Front-Panel Test Points:

Allow fast access to outputs of each channel.
Front-Panel Adjustments (Four per channel):
Provide quick access to gains, scales, and biases.
Allow precise adjustments with 20 -turn potentiometers.

Outputs

Amplifier outputs at terminals $5,10,15$, and 21 . Signal levels to ± 10 VDC nominal.

Temperature Range:

$10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ($50^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$)

Connector:

DIN 41612 style C

Form Factor:

Eurocard $100 \times 160 \mathrm{~mm}, 7 \mathrm{HP}, 3 \mathrm{U}$

Weight:

$0.38 \mathrm{lb}(0.17 \mathrm{~kg})$

ADJUSTMENTS

Because each card is uniquely configured, it is difficult to give precise adjustment instructions. Usually, for channel 1 (V OUT5), P1 and P2 change the scaling of inputs at terminals $1 \& 2 ; \mathrm{P} 3$ changes the gain; and P 4 changes the bias.
P5 through P8 control the corresponding functions of channel 2 (V OUT 10).
P9 through P12 control the corresponding functions of channel 3 (V OUT 15).
P13 through P16 control the corresponding functions of channel 4 (V OUT 21).
Set-up instructions are now available for several specific configurations including:
Conversion to dither generator ($25-300 \mathrm{~Hz}$).
Converting 4 to 20 mA input 0 to +10 V output.
Converting 4 to 20 mA input -10 to +10 V output.
Converting ± 1 VDC input ± 10 VDC output (non-inverting).
Converting 4 to 20 mA input 0 to -10 V output.

An 'Extender Card' is highly recommended to gain access to 'Test Points' and 'Adjustments' while cards are powered-up within a Eurocard Rack Assembly. (M oog ref P/N A81750-1)

Buffer Amplifier-Inverting

Inverting SummingAmplifier

set $R_{g}=\frac{R_{1} \cdot R_{2} \cdot R_{3} \cdot R_{f}}{R_{1} R_{2} R_{3}+R_{1} R_{2} R_{f}+R_{1} R_{3} R_{f}+R_{2} R_{3} R_{f}}$

Differential Amplifier

for $R_{f}=R_{g}$ and $R_{1}=R_{2}$
NOTES:

1. NF - NOT FURNISHED
2. - PIN 1 (SQUARE PAD ON PCB)
3.CW - CLOCKW ISE
3. $-0-$ - INDICATES COMPO NENT STANDO FF

$$
V_{0}=-\operatorname{R1C} 1 \frac{\Delta V_{1}}{\Delta t}
$$

BASIC NONINVERTING AMPLIFIER CIRCUIT

HIGH-PASSAND LOW-PASS FILTER CIRCUITS

(a) LOW-PASS FILTER

(b) HIGH-PASS FILTER

IN TEG RATO R

$$
\begin{aligned}
& \mathrm{V}_{\text {OUT }}=-\frac{1}{\mathrm{R1C} 1} \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2} \mathrm{~V}_{1 N} \mathrm{dt}} \\
& \mathrm{f}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{R1C1}}
\end{aligned}
$$

VO LTAGE FO LLO W ER

DIFFEREN TIATO R W ITH HIGH FREQ UEN CY N O ISE CO RRECTION

O FFSET VO LTAGE ADJUSTMEN T FO R VO LTAGE FO LLO W ERS

SET-UP INSTRUCTIONS

1. Converting Channel-1 \& $2 \Rightarrow$ Dither Generator w/D ither Freq ≈ 25 to 300 Hz

- Adjustable D ither Frequency (Sq W ave) and Amplitude
- Select Ch1 and Ch2 for circuit configuration
- Refer to Schematic Diagram - Figure 'A'
- A1 of Ch1 is NOT used (Remove from circuit)
- A2 of Ch2 is configured as a Free-RunningA stable Multivibrator Circuit or Square W ave Generator
- Dither Frequency $\Rightarrow f_{\text {Dither }}=1 / t_{1}=1 / 2[C 1 \times(P 7+R 21)]$
- Channel-1:
- Remove R1 (100K) \& replace with C2, 1mf, 35 VDC capacitor
- Install jumper Z1
- Insert jumper S3, S5, S7 \& S12 0 nly
- Ensure jumpers S1, S2, S4, S6, S8, S9 to S11 are N OT connected
- Remove R5 (100K) Resistor
- Remove R10 (10K) Resistor
- Remove R6 (100K) Resistor
- Remove R11 (100Ω) Resistor
- Jumper Pin-1 to Pin-5 of Ch1
- Connect jumper S4/Ch1 to Pin-2/Ch1
- Connect Pin-4/Ch1 to Pin-10/Ch2
- Set pot P1 of Ch1 to full CW position (Zero)
- Channel-2
- Insert jumpers S22 \& S23
- Ensure jumpers S13 to S21 and S24 are NOT connected
- Remove R13 (100K) \& replace with 49.9K, 1\% resistor
- Remove R12 (100K) \& replace with C1, 0.33mf, 35 VDC capacitor
- Remove R17 (100K) resistor
- Remove R22 (100Ω) resistor \& replace with 'jumper'
- Remove R21 (10K) \& replace with 8.2 K , I\% resistor
- Remove R16 (100K) \& replace with 20K, 1\% resistor
- Connect Pin-10/Ch2 to Pin-8/Ch2 and Pin-9/Ch2 to Pin-22/Sig G nd
- Monitor output voltage \& frequency at Pin-5/Ch1 (Frequency should range from 25 to 300 Hz by adjusting pot P7)
- Check circuit \& repeat set-up instructions if I/O conditions are NOT achieved

SET-UP INSTRUCTIONS

1. Converting 4 to 20 mA Input Command Signal $\Rightarrow 0$ to +10 VDC 0 utput Signal

- Select Ch1 and Ch2 for circuit configuration
- Refer to Schematic Diagram - Figure ' A '
- A1 of Ch1 is configured as a Differential A mplifier with a Gain of 2 X
- A2 of Ch2 is configured as an Inverting Amplifier with Zero Bias (offset) and Span (G ain) Adjust
- Channel-1:
- Remove R6(100K) Resistor
- Install jumper Z3
- Insert jumper S9 \& S12 O nly
- Ensure jumpers S3, 4 and S7, 8 are NOT connected
- Remove R5 (100K) \& replace with 200K, I\% resistor
- Remove R10 (10K) \& replace with 200K, 1\% resistor
- Jumper Pin-5/Ch1 to Pin-8/Ch2
- Install 250 , 1\% resistor across Pins-3 and Pin-4 of Ch1 Input
- Channel-2:
- Install jumper S21
- Ensure jumpers S15, 16 \& S19, 20 \& S23, 24 are N OT connected
- Remove R16 (IOOK) \& replace with1K, 1\% resistor
- Apply a 4 to 20 mA Input Signal to Pins 3 \& 4
- Measured voltage across Pins 3 \& 4 should range from 1VDC to 5VDC (Voltage drop across 250Ω input resistor)
- Monitor output voltage at A1/Pin-6 (Voltage should range from 2 VDC to 10 VDC)
- Set Current Driver input signal to +4 mA
- Adjust BIAS (Zero O ffset) pot (P8) to obtain OVDC at Test Point 'Vout-10'
- Set Current Driver input signal to +20 mA
- Adjust GAIN (Span) pot (P7) to obtain +10VDC at Test Point 'Vout-10'
- Verify output voltage at Test Point 'Vout-10' is +10 V
- Ensure Span output (A2) does not enter saturation
- Span \& Zero interaction is N ormal. Multiple iterations may be required Continue to repeat adjustment until both are within specification (0 to +10 V) without further adjustment.
- Adjust Input Command from 4 to 20 mA
- Verify voltage range at Pin-10 is 0 to +10 V as Current Input varies from 4 to 20 mA
- Check circuit \& repeat set-up instructions if I/O conditions are NOT achieved

Fig.A - Model NF123-158B1;Corverting Channel $1 \& 2 \Rightarrow$ Dither Generator w/Adj SqWave Freq $=25$ to $\mathbf{3 0 0} \mathbf{H z}$

2. Converting 4 to 20 mA Input Command Signal $\Rightarrow-10$ to +10 VDC O utput Signal ($\pm 10 \mathrm{~V}$)

- Requires selection of all 4-C hannels for circuit configuration
- Refer to Schematic Diagram - Figure 'B'
- A1 of Ch1 is configured as an Inverting Unity-G ain Amp
- A2 of Ch2 is NOT used
- A3 of Ch3 is configured as a Differential Amp with a Gain of $1 X$
- A4 of Ch4 is configured as a Summer Amp with BIASAdjust \& fixed Gain of -5X
- Low-Pass Filter Section is re-configured as a +10VDC Reference Supply
- Channel-1:
- Install jumper Z3
- Insert jumper S9 O N LY
- Ensure jumpers S1 to S8 and S10 to S12 are NOT installed
- Remove RIO (10K) \& replace with 100K, 1\% resistor
- Remove R12 (100K) \& replace with 2K,1\% resistor
- Remove R5 (100K) \& replace with 50K, 1\% resistor
- Jumper Pin-5 of Ch1 to Pin-4 of Ch1
- Connect 'center' pin of jumper S11, 12 to Pin-6 of Ch2
- I/O conditions:
- Ch1/Pin-3 $\Rightarrow+$ IOVDC Input
- Ch1/Pin-5 \Rightarrow-10VDC Output
- Ch1/Pin-4 \Rightarrow-10VDC Input
- C hannel-2:
- Install jumper Z4
- Insert jumper S16 \& S24 O N LY
- Ensure jumpers S13 to S15 \& S17 to S23 are N OT installed
- Remove resistor R12 \& R13 \& replace with $2 \mathrm{k}, 1 \%$
- C onnect 'center' pin of jumper S13, 14 to 'center' pin of S21,22
- Connect Pin-8/Ch2 to Pin-28 \Rightarrow Power Supply Input Section
- I/O conditions:
- Ch2/Pin-6 $\Rightarrow-10$ VDC Input
- Ch2/Pin-8 $\Rightarrow+15$ VDC Power Input
- Ch2/Pin-9 \Rightarrow-3VDC BiasVoltage Setting
- Channel-3:
- Install jumper Z9
- Insert jumper S33 \& S36 O N LY
- Ensure jumpers S25 to S32 \& S34, 35 are N OT installed
- Remove resistor R23, R24, R27 \& R28 (100K) and R32 (10K)
- Replace resistor R23, R24, R27 and R32 with 200K, 1\%
- Remove R28 (100K) resistor
- Install $250 \Omega, 1 \%$ precision resistor across Pin-13 and Pin-14 of Ch3 Input
- Connect Pin-15/Ch3 to Pin-18/Ch4 \Rightarrow A4-O utput Gain Stage
- I/O conditions:
- Ch3/Pin-13,14 $\Rightarrow+1 \mathrm{VDC}$ @ 4 mA to +5 VDC @ 20 mA (250 load)
- Ch3/Pin-15 $\Rightarrow+$ I to +5 VDC Voltage Swing
- C hannel-4:
- Install jumper Z12
- Insert jumper S45 O N LY
- Ensure jumpers S37 to S44 and S46 to S48 are N OT installed
- Remove resistor R35, R38, R39 (100K) and R43 (10K)
- Replace resistors R35 with 2 K ; R38 with 5K and R43 with 10K (1\% toll)
- Connect Pin-9/Ch2 to R39 (Pin-2) of Ch4
- I/O conditions:
- Ch4/Pin-18 $\Rightarrow+1$ to +5 VDC Input Range
- Ch4/Pin-21 $\Rightarrow \pm 10$ VDC 0 utput
- Low-Pass Filter Section:
- Install jumper across R45 ($\mathrm{N} F=\mathrm{N}$ ot Furnished)
- Replace resistor R46 (N F) with 27.4K, 1\%
- Replace capacitor C7 (N F) with a 10.0V Zener Diode - LM4040 type or equivalent (A node to Gnd) - Label as DZ1 designation
- Connect Pin-25 (Low-Pass Filter Section) to Pin-28 (Power Input Section)
- Connect Pin-23 (Low-Pass Filter Section) to Pin-3 (Ch1)
- I/O conditions: Low Pass Filter Section
- Pin- $23 \Rightarrow+10$ VDC Ref O utput
- Pin-25 $\Rightarrow+15$ VDC Power Input
- Check circuit \& repeat set-up instructions if I/O conditions are NOT achieved

Fig. B - Model NF123-158B1; Corverting 4 to 20 mA Input Command Signal $\Rightarrow-10$ to +10 loVDC Output Signal (\pm 10VDC)

Fig. B - Model NF123-158B1; Converting 4 to 20 mA Input Command Signal $\Rightarrow-10$ to +10 VDC Output Signal ($\pm 10 \mathrm{VDC}$)

SET-UP INSTRUCTIONS

Converting Channel-1 \& $2 \Rightarrow 4$ to 20 mA Input Command $=0$ to -10
VDC 0 utput Signal

1. Select Ch1 and Ch2 for circuit configuration
2. Refer to Schematic D iagram - Figure 'C'
3. Install jumpers between Pin-5 (Ch1) \& Pin-6 (Ch2) and Pin-15
(Ch3) \& Pin-16 (Ch4) for proper operation
4. Refer to diagram for component installation/values including
jumper locations
5. Channel-1: Connect current source to Input Pins 4 (+) \& 3 (-)

- Set Current to 0.0mA
- Monitor voltage at Vout-5
- Adjust P4 for 0VDC

6. Set current Input to +20.0mA
• Adjust P3 for +10.0VDC at Vout-5

- Set Current to +4.0mA
• Verify +2.0 VDC at Vout-5

7. Channel-2:Adjust P5 fully 'CW ' and P7 fully 'CCW '
• Set Current to +4.0mA
• Adjust P8 for 0.0VDC at Vout-10
8. Set current to +20mA
• Adjust P7 for -10.0 VDC at Vout-10
• Verify 0.0VDC at +4.0mA Input
9. Check circuit \& repeat set-up instructions if I/O conditions are
N OT achieved

Fig.C - Model NF123-158B1; Corverting 4 to 20 mA Input Command Signal $\Rightarrow 0$ to -10..

SET-UP INSTRUCTIONS: INVERTING AMPTO NON-INVERTING AMP

Converting ± 1 VDC Input Command Signal $\Rightarrow \pm 10$ VDC 0 utput (N on-Inverting) Signal

- Select Ch1 for circuit configuration
- Refer to Schematic Diagram
- A1 of Ch 1 is configured as a Non-Inverting A mplifier with a G ain of $1 X$ to 21X
- Channel-1:
- Insert jumper Z1, S1, S3 \& S10 O nly
- Ensure jumpers $\mathrm{S} 2, \mathrm{S4}, \mathrm{~S} 5$ thru $\mathrm{S} 9, \mathrm{~S} 11, \mathrm{~S} 12$ \& $\mathrm{Z} 2,3$ are N $O T$ connected
- Remove R2 (100K) resistor \& replace with jumper
- Remove R5 (100K) resistor from circuit
- Remove R10 (10K) resistor \& replace with jumper
- Set P1 potentiometer to 5 K
- Connect Pin-15/N F122-202A1 to Pin-3/Ch1
- Connect Pin-22 (G nd)/N F122-202A1 to 'G nd' side of R5 resistor (Pin-2)
- DO NOT use Pin-1/Ch1 of the N F123-158B1
- Apply a ± 1 VDC Input Signal across Pin-3 to Ground (Pin-22)
- Measured voltage across Pin 3 to Ground (Pin-22) should range from ± 1 VDC to -1VDC (Input Signal from N F122-202A1 C ard)
- Monitor output voltage at Pin-5/Ch1
- Gain $=e_{0} / e_{n}=(1+P 3 / P 1) \Rightarrow$ N on-InvertingAmplifier Configuration
- Calculated Gain Range $=1$ min to $21 \max$
- W ith ± 1 VDC Input Signal @ Pin-3/Ch1, adjust P3 (GAIN) pot for ± 10 VDC 0 utput (Non-Inverting) @ Pin-5/Ch1.Verify.
- Check circuit \& repeat set-up instructions if $1 / 0$ conditions are NOT achieved

Fig. D - Model NF123-158B1; Converting \pm IVDC Input Command Signal $\Rightarrow \pm 10$ VDC Output (Non-Irverting) Signal

MOOG
Industrial Controls Division Moog Inc., East Aurora, NY 14052-0018 Telephone: 716/655-3000
Fax: 716/655-1803
Toll Free: 1-800-272-MO O G

