SPECIFICATIONS

Power Supply:

$\pm 15 \mathrm{VDC}$ regulated $+24 \mathrm{VDC}$

Relays:

Consumption $=15 \mathrm{~mA} /$
24VDC each
Contact rating $=2.50 \mathrm{~mA} /$
$175 \mathrm{VDC} / 3$ watts
Coil Resistance: $2 \mathrm{~K} \Omega$ @ $20^{\circ} \mathrm{C}$
Max pick-upVDC @ $20^{\circ} \mathrm{C}: 18.0 \mathrm{VDC}$
Min drop-upVDC @ $20^{\circ} \mathrm{C}: 2.0 V D C$
Temperature Range:
$10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $120^{\circ} \mathrm{F}$)

Connector:

DIN 41612 style C

Form Factor:

Eurocard $100 \times 160 \mathrm{~mm}, 7 \mathrm{HP}, 3 \mathrm{U}$

Weight:

$0.38 \mathrm{lb}(0.17 \mathrm{~kg})$

This Four Channel Permaset Relay Card is designed to easily accommodate the setting of four set point voltages between -15VDC and +15VDC. These voltages can be used as set point values for a control device such as a position or velocity controller. The set point voltages can also be switched by externally controlled relays.

The N F123-208A1 Four Channel Permaset Relay Card is a forward compatible replacement for the F123-208-A001.

ADJUSTMENTS

Output Voltages

Potentiometer 1-P1 (R1-R2-R3)
Potentiometer 2-P2 (R6-R7-R8)
Potentiometer 3-P3 (R11-R12-R13)
Potentiometer 4-P4 (R16-R17-R18)

Function Selection

Jumpers select input voltage for each potentiometer:
$\mathrm{J} 1, \mathrm{~J} 8, \mathrm{~J} 15, \mathrm{~J} 22$ input voltage is from external source.
$\mathrm{J}, \mathrm{J}, \mathrm{9}, \mathrm{J} 16, \mathrm{~J} 23$ input voltage is +15 VREF.
$\mathrm{J} 3, \mathrm{~J} 10, \mathrm{~J} 17, \mathrm{~J} 24$ input voltage is -15 VREF.
Jumpers select each output voltage:
$\mathrm{J} 4, \mathrm{~J} 11, \mathrm{~J} 18, \mathrm{~J} 25$ output is potentiometer output direct
$\mathrm{J} 5, \mathrm{~J} 12, \mathrm{~J} 19, \mathrm{~J} 26$ output is potentiometer switched by relay
$\mathrm{J} 6, \mathrm{~J} 13, \mathrm{~J} 20, \mathrm{~J} 27$ output is input voltage switched by relay
J7, J14, J21, J28 relay latch/reset operation

NF123-208A1 PERMASET RELAY CARD SCHEMATIC

An 'Extender Card' is highly recommended to gain access to 'Test Points' and 'Adjustments' while cards are powered-up within a Eurocard Rack Assembly.
(M oog ref P/N A81750-1 Extender)

NF123-208A1 PERMASET RELAY CARD

Q.W hat are resistors R11, R12 and R13 (C hannel-1) typically sized to? Purpose?
A. R11 to R13 are NF or 'Not Furnished' resistor components which have 'standoffs' for ease of adding a specific resistance value to the circuit. R11 \& R12 along with 5 K Pot (P3) form a'voltage divider network'. W ith a resistor installed at R11 \& R12, the pot range of P3 would be limited from reaching the 'rail' or max reference input voltage. W ithout R11 \& R12 installed, the output range is regulated by the full span of P3.The values of $R 11 \& R 12$ are based on the desired output set-point voltage.The existing circuit is designed to produce an output set-point voltage between - 15 VDC and +15VDC (Input ref voltage). Other input voltages from an external source may be applied, but will result in adding resistors R11 \& R12. Resistor R13 is used in the 'wiper' position of P3 for providing 'authority' to the pot or sensitivity / range to the output. The higher R13 is, the less 'authority' or range the pot will have. Typical value assignments are $\mathrm{R} 11=4.7 \mathrm{~K}, \mathrm{P} 3=5 \mathrm{~K}$, $R 12=330 \Omega \& R 13=5 \mathrm{~K}$ for input voltages outside $\pm 15 \mathrm{~V}$ range. Keep in mind that R11 to R13 may need to be added for conditions between $\pm 15 \mathrm{~V}$ such as reducing or increasing pot authority or sensitivity depending on actual application. The rule of thumb is to be able to adjust the pot (P3) for an output without being at the end on
the pot turns ratio for best stability. So, setting pot around the mid-range of turns-ratio is highly recommended. R11 to R13 may be jumpers or Zero 0 hm resistors.

The 4-C hannel Permaset relay card is designed to easily accommodate the settings of 4 -set-point voltages between - 15 VDC and +15 VDC . These voltages can be used as set-point values for a control device such as a position or velocity controller. The setpoint voltages can be switched by externally controlled SPDT relays (K1 to K4).

Consider Channel-1 for discussion purposes. Relay K1 can be energized by high ($5-15 \mathrm{VDC}$) or low (0 VDC) logic signal and may be used for integrator reset, signal switching, alarm sensing, LED status indication, or other related functions. Pin-3 is the N.C. relay contact; $\mathrm{Pin}-2$ is the N. 0 . relay contact (J1 'O N'; J2 through J5 O FF \& $\mathrm{J} 6^{\prime} \mathrm{O}^{\prime} \mathrm{N}^{\prime}$; Pin- 1 is the common relay contact. Pin- 4 \& 5 are Relay Trigger connections for relay latch/reset configuration.To energize relay, connect Pin-4 (active low or enable low state) to Pin-24 (Power Gnd). Grounding Pin-4 will cause relay K1 to activate. For activating high state (enable high), connect +5 to +15 VDC to Pin-5 to activate relay. This provides flexibility in changing activation state of relay logic.

EXAMPLE - SET-POINTVOLTAGE ANALYSIS

Let's say the input voltage is +24 V ref and a set-point voltage of +10 V is desired.

Indus trial Controls Division
Moog Inc., East Aurora, NY 14052-0018
Telephone: 716/655-3000
Fax: 716/655-1803
Toll Free: 1-800-272-MO O G

