

The Model 935 is one of the highest performance rotary servo actuators available on the market. We offer this actuator with a digital and analog communications interface. Also, we can customize the actuator to provide up to ±90 degree angular excursion in a slightly longer package. These options allow our customers flexibility based upon the architecture in the system to have a drop-in servo actuator.

TYPICAL APPLICATIONS

- Unmanned air vehicles tactical, medium long endurance and MALE / HALE vehicles
- Control surfaces requiring servo actuation
- Target drones control surfaces, speed brakes
- Utility actuation throttle control, doors, spoilers
- Electric aircraft, eVTOL, eSTOL, air taxis and urban air mobility vehicles tilting mechanism, flight control, landing gear

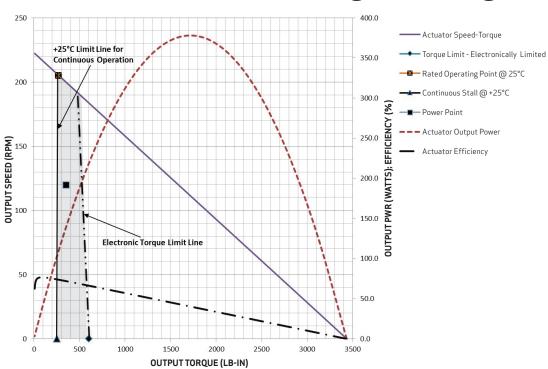
FEATURES

- Integrated position servo loop control with either analog or digital communications
- Non-jamming mechanical stops
- 4 stage spur gear train assembly
- Stainless steel output shaft, 0.5 inch SAE spline
- Brushless permanent magnet motor design
- High temperature capability
- Electronic stops limit input command
- NTC thermistor in motor for temp sensing of motor windings
- Outputs for current, velocity and temperature telemetry
- Signal interface is digital RS-485 electrical protocol
- Thermal management options available for high altitude application

BENEFITS

- Robust structural design
- Mechanical stops
- Low weight to power performance
- Customizable

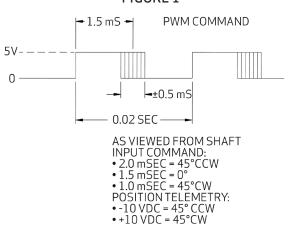
DESIGN AND CONSTRUCTION


- IPC-6012, Class 3
- J-STD-001B, Class 3
- IPC-A-610, Class 3

ENVIRONMENTAL SPECIFICATIONS

MIL-STD-461F Test

Description	Details	
Temperature/ Altitude	-40° to +60° C 0 to 65,000 feet	
Explosive Atmosphere	Sea level - ambient H2 4% to 75% volume	
Random Vibration	Table 5.3	
Static Load	600 in-lb to each stop	
25% Life Cycle	125 hours	
Conducted Susceptibility	Method CS-114 Curve 5	
Radiated Susceptibility	Method RS-103 200 V / m	


CALCULATED PERFORMANCE CURVES @ 28 VDC AND @ 25°C

	PERFORMANCE DATA SPECIFICAT	TIONS	
Features	Model 93500000-34	Model 93500000-36	
Operating Voltage	21 to 32 VDC	21 to 32 VDC	
Operating Temperature Range	-40° to +71° C	-40° to +71° C	
Operating Altitude Range	-1,500 to +65,000 ft	-1,500 to +65,000 ft	
Weight	3.9 lbm max	3.7 lbm max	
Mechanical Stroke	±50°	±50°	
Electrical Stroke	±45° - electronically limited	±45° - electronically limited	
No Load Speed @ 28 VDC	180° / sec nominal - electronically limited	90° / sec nominal - electronically limited	
Static Current @ 28 VDC	200 mA nominal	< 150 mA	
Peak Stall Torque	600 in-lbf nominal - electronically limited	600 in-lbf nominal - electronically limited	
Continuous Stall Torque	150 in-lbf	150 in-lbf	
Line Current At Peak Stall Torque	6 amps nominal - electronically limited	< 6.4 amps	
Unpowered Backdrive Torque	15 in-lbf max	15 in-lbf max	
Power Point	350 in-lbf @ 120° / sec	280 in-lbf @ 60° / sec	
Electromechanical Stiffness	100 in-lbf / degree, nominal	485 in-lbf / degree, nominal	
Maximum Shaft Inertia	81 lb-in²	520 lb-in ²	
Backlash	< = 36 arc min ¹	< = 36 arc min ¹	
Small Signal Frequency Response	5.0 Hz - at no load	5.0 Hz - at no load	
Electrical Command Interface	4 wire RS-485 – full duplex ²	R/C PWM³	
Communication Protocol	See note 2	N/A	
Command and Position Resolution	12 bits²	N/A	
Addressing	Connector pin strapping – up to 16 addresses ²	N/A	
Loss of Communication	Float after 500 milliseconds	Return to null after 500 milliseconds	

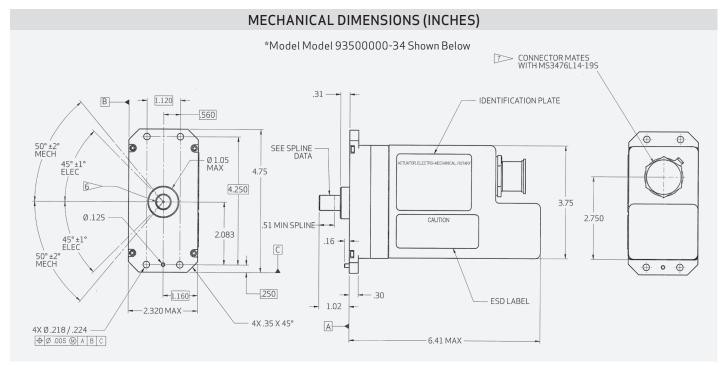
Notes:

FIGURE 1

 $^{^{1}}$ With ± 10 in-lbf reversing load applied to shaft.

²Contact Moog sales to receive detailed protocol information.

³Refer to Figure 1 for the PWM Command for Model 93500000-36.


CONNECTOR PIN ASSIGNMENT				
Pin	RS-485 Version Model 93500000-34	R/CPWM Version Model 93500000-36	*Pin Diagram	
А	Power Gnd	Power Gnd		
В	Power Gnd	Power Gnd		
С	+ 28 VDC	+ 28 VDC		
D	+ 28 VDC	+ 28 VDC		
Е	Current telemetry	Current telemetry		
F	Velocity telemetry	Velocity telemetry		
G	Signal RTN	Signal RTN		
Н	Transmit high	Position telemetry	OM OA OB	
J	Transmit low	Reserved	// å e ^N e ^P ec\\	
K	Receive high	RC PWM In	$\begin{pmatrix} K & U & e^{V} & e^{R} & e^{V} \end{pmatrix}$	
L	Receive low	RC PWM Rtn		
M	Temperature telemetry	Temperature telemetry	$H_{\Theta} G_{\Theta} F_{\Theta} E$	
N	Unit ID "A"	Reserved		
Р	Unit ID "B"	Reserved		
R	Temp return	Temp return		
S	Chassis Gnd	Chassis Gnd		
T	Unit ID "C"	Reserved		
U	Unit ID "D"	Reserved		
V	Unit ID Rtn	Reserved		

^{*}For reference only, Amphenol® catalog pin arrangement.

INVOLUTE SPLINE DATA

External Involute - Class 5 Fit Fillet Root, Side Fit Per ANSI B92.1a-1976

Features	Model Model 93500000-34	Model Model 93500000-36
Number of Teeth	23	23
Pitch	48 / 96	48 / 96
Pitch Diameter	0.4792	0.4792
Pressure Angle	45	45
Base Diameter	0.3388 ref	0.3388 ref
Major Diameter	0.499 +0002	0.499 +0002
Minor Diameter	0.451 min	0.451 min
True Involute Form Diameter	0.465	0.465
Effective Circular Tooth Thickness Maximum	0.0369	0.0369
Actual Circular Tooth Thickness Minimum	0.0343	0.0343
Fillet Radius	0	0.0043
Measurement Over 0.0400 Diameter Pins	0.5428 min ref	0.5428 min ref

^{*}Model 93500000-36 is similar to Model 93500000-34 in dimensions.

Americas

1501 North Main Street, Blacksburg, Virginia 24060 +1 (540) 552 3011 poweranddata@moog.com www.moog.com

Europe

30 Suttons Business Park, Reading Berkshire, RG6 1AW +44 (0) 118 966 6044 poweranddata@moog.com www.moog.com

Moog Space and Defense

@MoogSDG

@MoogSDG

@MoogInc

Equipment described herein falls under the jurisdiction of the ITAR and requires US Government. Authorization for export purposes. Diversion contrary to US law is prohibited.