DIRECT DRIVE BRUSHLESS DC TORQUE MOTORS

DB / DBE MATRIX™ SERIES

Courtesy of U.S. Army
The DB / DBE Matrix™ Series brushless torque motors are used in applications that require high power density and / or quick accelerations. The designs are optimized to minimize input power for maximum efficiency.

Utilizing high energy rare earth magnets and dense slot fills, the DB Matrix Series achieves high Km values. This provides the highest performance per volume and minimizes the motor footprint within the system. The motors are supplied as a direct drive rotor / stator frameless part set that is directly attached to the load. This form of attachment eliminates backlash and increases servo stiffness for an optimized direct drive system.

Moog is a worldwide designer, manufacturer, and integrator of precision control components and systems. Moog’s high-performance systems control military and commercial aircraft, satellites, and space vehicles, launch vehicles, missiles, automated industrial machinery, and marine and medical equipment.

Additional information about the company’s offering of motors and motion solutions can be found at www.moog.com.

FEATURES
- Compact
- Peak torque from 21 to over 650,000 oz-in (0.15 to 4,590 Nm)
- Double insulated high temp magnet wire minimizes leakage current and provides good thermal resistance
- Stable high temp encapsulation material minimizes movement or working of windings under large temperature variations
- Rare earth magnets
- High power density
- High torque to inertia ratio
- Low speed with high accuracy
- Large through bores

BENEFITS
- Operate over a wide range of speeds - not limited to AC frequency
- Extremely quiet operation with long life capability
- Motor life is not limited to brush or commutator life
- Efficient operation without losses associated with brushes

OPTIONS
- Winding options to adjust torque sensitivity, back EMF, DC resistance for matching a variety of system requirements
- Varying stack lengths from 0.10 to over 30 inches (2.54 to 762 mm)
- Mounting flanges, hubs, mounting holes and connectors may be added as required
- Hall Effect Sensors for commutation

TYPICAL APPLICATIONS
- Speed and rotation control systems
- Gimbal for FLIR and inertial navigation systems
- Stabilized gun and fire control systems for combat vehicles
- Fire control radars for land and shipboard defense
- Cockpit instrumentation for military and commercial aircraft
- Space and vacuum instruments, actuation systems and momentum wheels
The DB / DBE Matrix Series is a family of motors consisting of a wide range of sizes, outside diameters from 1.5 to 22 inches (38 to 559 mm) with several stack sizes for each diameter.

Along with our standard Matrix motors, our engineers design custom solutions. If our existing models don't meet your needs, we will tailor them or provide options for a best value solution to meet your exact requirements.

<table>
<thead>
<tr>
<th>Model</th>
<th>Peak Torque oz-in (Nm)</th>
<th>Amps at Peak Torque</th>
<th>Torque Sensitivity oz-in / amp (Nm / V-W)</th>
<th>Weight oz (nom) (Kg)</th>
<th>OD in (mm)</th>
<th>ID in (mm)</th>
<th>Length in Stack Length in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-1500</td>
<td>21 - 211 (.15 - 1.48)</td>
<td>15.0</td>
<td>1.43 - 14.1 (.01 - .10)</td>
<td>2.77 - 14.6 (.02 - .10)</td>
<td>2.7 - 15 (.08 - .43)</td>
<td>1.5 (38.1)</td>
<td>0.250 (6.35)</td>
</tr>
<tr>
<td>DB-2000</td>
<td>34 - 376 (.24 - 2.63)</td>
<td>5.0</td>
<td>6.89 - 75.2 (.05 - .53)</td>
<td>4.75 - 25.7 (.03 - .18)</td>
<td>4.0 - 33 (.11 - .93)</td>
<td>2.0 (50.80)</td>
<td>0.375 (9.53)</td>
</tr>
<tr>
<td>DBE-2000 (with Hall Effects)</td>
<td>43 - 377 (.30 - 2.64)</td>
<td>5.0</td>
<td>8.60 - 75.5 (.06 - .53)</td>
<td>5.93 - 25.8 (.04 - .18)</td>
<td>4.6 - 34 (.13 - .96)</td>
<td>2.0 (50.80)</td>
<td>0.375 (9.53)</td>
</tr>
<tr>
<td>DB-3000</td>
<td>151 - 121 (.10 - .85)</td>
<td>10.0</td>
<td>5.1 - 121 (.09 - .45)</td>
<td>10.4 - 51.3 (.07 - .36)</td>
<td>10.7 - 41.0 (.30 - 1.16)</td>
<td>3.0 (76.2)</td>
<td>1.250 (31.75)</td>
</tr>
<tr>
<td>DB-4000</td>
<td>2,000 - 5,000 (14 - 35)</td>
<td>30.1</td>
<td>66.5 - 166.1 (.47 - 1.16)</td>
<td>67.2 - 129.7 (.47 - .91)</td>
<td>117 - 245 (3.31 - 6.94)</td>
<td>4.0 (101.6)</td>
<td>0.64 (16.2)</td>
</tr>
<tr>
<td>DB-5000</td>
<td>576 - 9,024 (4.07 - 63.72)</td>
<td>8.0</td>
<td>72 - 1128 (.51 - 7.97)</td>
<td>22.2 - 186.0 (.16 - 1.31)</td>
<td>31 - 255 (.88 - 7.23)</td>
<td>5.0 (127.0)</td>
<td>2.0 (50.8)</td>
</tr>
<tr>
<td>DB-6000</td>
<td>1,686 - 10,083 (11.80 - 70.58)</td>
<td>20.0</td>
<td>84.3 - 505.0 (.59 - 3.56)</td>
<td>80.4 - 270.0 (.057 - 1.89)</td>
<td>37 - 160 (1.05 - 4.54)</td>
<td>6.0 (152.4)</td>
<td>4.0 (101.6)</td>
</tr>
<tr>
<td>DBE-6000 (with Hall Effects)</td>
<td>1,686 - 10,083 (11.80 - 70.58)</td>
<td>20.0</td>
<td>84.3 - 505.0 (.59 - 3.56)</td>
<td>80.4 - 270.0 (.057 - 1.89)</td>
<td>45 - 168 (1.27 - 4.76)</td>
<td>6.0 (152.4)</td>
<td>4.0 (101.6)</td>
</tr>
<tr>
<td>DB-8000</td>
<td>1,865 - 18,450 (13.2 - 130.3)</td>
<td>14.5</td>
<td>129 - 1,273 (.91 - 8.99)</td>
<td>81.9 - 461.5 (.0578 - 3.26)</td>
<td>48 - 312 (1.36 - 8.85)</td>
<td>8.0 (203.2)</td>
<td>5.0 (127)</td>
</tr>
<tr>
<td>DBE-8000 (with Hall Effects)</td>
<td>1,865 - 18,450 (13.2 - 130.3)</td>
<td>14.5</td>
<td>129 - 1,273 (.91 - 8.99)</td>
<td>81.9 - 461.5 (.0578 - 3.26)</td>
<td>56.5 - 312 (1.60 - 9.30)</td>
<td>8.0 (203.2)</td>
<td>5.0 (127)</td>
</tr>
<tr>
<td>DB-9000</td>
<td>4,915 - 30,682 (34.7 - 216.7)</td>
<td>20.0</td>
<td>246 - 1,534 (1.74 - 10.83)</td>
<td>164.6 - 626.8 (1.16 - 4.43)</td>
<td>81.6 - 368 (2.31 - 10.4)</td>
<td>9.0 (228.6)</td>
<td>6.375 (161.93)</td>
</tr>
<tr>
<td>DB-14540</td>
<td>21,674 - 10,8319 (153.05 - 764.90)</td>
<td>34.0</td>
<td>639.4 - 3149.0 (4.52 - 22.24)</td>
<td>323.8 - 1142.2 (2.29 - 8.07)</td>
<td>160 - 624 (4.54 - 17.7)</td>
<td>14.540 (369.32)</td>
<td>11.46 (291.08)</td>
</tr>
<tr>
<td>DB-22000</td>
<td>10,2912 - 67,8912 (727 - 4794)</td>
<td>40.0</td>
<td>2573 - 16973 (18.17 - 119.85)</td>
<td>1218 - 4744 (8.60 - 33.50)</td>
<td>768 - 3964 (21.8 - 112.5)</td>
<td>22.0 (559)</td>
<td>17.50 (445)</td>
</tr>
</tbody>
</table>