

EXCALIBUR SERIES

MIL-DTL-38999 OPTICAL TRANSPONDER, XAUI TO 10GBASE-ZR APPLICATIONS, SINGLEMODE, 1550 nM

Excalibur series optical fiber transponders consist of optoelectronic transmitter and receiver functions integrated into a bulkhead mounted MIL-DTL-38999, series III receptacle connector along with the 10 Gbps / XAUI SerDes functions. The optical transmitters are $1550\,\mathrm{nM}$ lasers.

The optical receivers consist of PIN and preamplifier assemblies and limiting post-amplifiers. The XAUI electrical interface to the Excalibur series optical fiber transponders is a Samtec controlled impedance connector enabling interface to a ribbon TWINAX cable or flexible printed circuit assembly.

Excalibur series optical fiber transponders are vibration isolated, environmentally hardened components designed for use in harsh environment applications.

Quad Port

FEATURES

- Suitable for 10GBASE-ZR 10G Ethernet applications @ 10.3125 Gbps
- Optical fiber link distances up to 80 KM (9 / 125 μ SMF)
- \bullet Maximum optical channel bit error rate less than $1x10^{-12}$
- Operating temperature range from -40° to +85° C
- Shock, vibration and immersion resistant per MIL-STD-810 and MIL-STD-1344
- Aluminum alloy MIL-DTL-38999 housings are strong, durable, corrosion resistant and light weight
- ARINC 801 compliant optical fiber connector interface

APPLICATIONS

Excalibur series bulkhead mounted optical transponders enable extremely high speed network communications over long distances in harsh environments.

- 10 Gigabit Ethernet switches and peripherals
- Serial data links
- Video displays

The MIL-DTL-38999, series III shell provides a sealed optical interface that is water-tight to MIL-STD-810 / IP67 / NEMA-4x when mated.

The singlemode optical fiber interface supports applications where copper cable link distance, bandwidth, weight or bulk make the use of twisted pair, twinax or quadrax copper conductors unacceptable.

ORDERING INFORMATION				
Application	Part Number			
Quad Port, XAUI to 10GBase-ZR	E38M-8xCK-JD-L889-L660			

ABSOLUTE MAXIMUM RATINGS

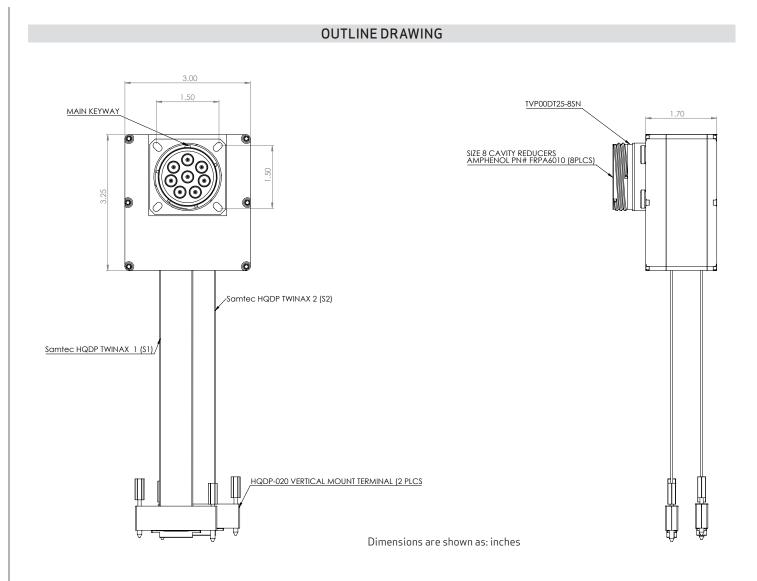
Absolute maximum limits mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time.

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Storage Temperature	T_s	-55		+100	°C
Supply Voltage	V _{cc}	-0.5		+6.0	V

RECOMMENDED OPERATING CONDITIONS						
Parameter	Symbol	Minimum	Typical	Maximum	Unit	
Operating Temperature	T _A	-40		+75	°C	
Supply Voltage	V _{cc}	+4.75		+5.25	V	
TX Common Mode Voltage	V _{CM}		2.0		V	
TX Differential Input Voltage (p-p)	V _D	0.25		2.2	V	
Power Supply Noise (p-p)	N _P			200	mV	

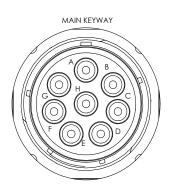
CONNECTOR INTERFACE SPECIFICATIONS COMPLIANCE						
Requirement	Feature	Condition	Notes			
MIL-STD-883	ESD	Class II	2200 V			
MIL-STD-810	Vibration	3.8 g ² / Hz	43 G rms			
MIL-STD-810	Shock	40.0 g	6-9 mS			
MIL-STD-810	Immersion	1.0 Meter	2.0 Hours			
MIL-STD-1344	Flame Resistance	Method 1012	30 Seconds			
MIL-STD-1344	Damp Heat	10 Cycles	24 Hours			
MIL-STD-38999	Mating Durability	500 Cycles	< 0.5 dB Change			
FDA / CDRH / IEC-825-1	Eye Safety	Class 1	No Safety Interlocks Required			

MATERIALS					
ltem	Detail	Notes			
Housing and Shell	Aluminum Alloy				
Housing and Shell Plating	Electroless Nickel				
Insert	Thermoplastic				
Interfacial Seal	Elastomer				
Optical Ferrules	Ceramic				
Printed Circuits	Polyimide / FR-4				

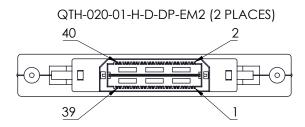

OPTICAL TRANSMITTERS $T_A = OPERATING TEMPERATURE RANGE, V_{CC} = 4.75 V TO 5.25 V$						
Parameter Symbol Minimum Typical Maximum Unit						
Optical Output Power (BER < 10 ⁻¹²)	P_{o}	0		+5	dBm	
Optical Output Wavelength	$\lambda_{ ext{out}}$	1530		1565	nM	
Extinction Ratio	ER	8.2			dB	

OPTICAL RECEIVERS T_A = OPERATING TEMPERATURE RANGE, V_{CC} = 4.75 V TO 5.25 V					
Parameter Symbol Minimum Typical Maximum Unit					
Optical Sensitivity (BER < 10 ⁻¹²)	P _i	-20		-7	dBm
Optical Wavelength	$\lambda_{_{IN}}$	1530		1565	nM

ELECTRICAL AC CHARACTERISTICS T_A = OPERATING TEMPERATURE RANGE, V_{CC} = 4.75 V TO 5.25 V					
Parameter	Symbol	Minimum	Typical	Maximum	Unit
XAUI Input / Output Baud Rate - TXLANE [03] and RXLANE [03]	R _{XAUI IN / OUT}		3.125		Gbit/s
Baud Rate Variation	R _{XAUI IN / OUT}	-100		100	ppm
Differential Input / Output Impedance	Z _{XAUI IN / OUT}	80	100	120	Ω
Input Differential Skew	t _{skew in}			75	ps
Output Differential Skew	t _{skew out}			15	ps


POWER SUPPLY CURRENT T_A = OPERATING TEMPERATURE RANGE, V_{CC} = 4.75 V TO 5.25 V					
Parameter	Symbol	Minimum	Typical	Maximum	Unit
Supply Current Per Port	I _{CCT}		.5	.750	A

OPTICAL LINK DISTANCES					
Cable Type	9/125μ				
Maximum Supported Link Distance - Km	80				


OPTICAL TRANSCEIVER INSERT ARRANGEMENT

Optical Interface

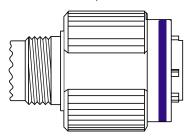
Front face of the optical transponder insert shown, fiber optic cable plug opposite - see Appendix A1 for details.

Electrical Interface

See Electrical Pin Assignment pages for details.

OPTICAL TRANSPONDER PORT ASSIGNMENTS						
Position	Function	Port Number				
A	CH1 TX	1				
В	CH1 RX	1				
С	CH2 TX	2				
D	CH2 RX	2				
E	CH3 TX	3				
F	CH3 RX	3				
G	CH4 TX	4				
Н	CH4 RX	4				

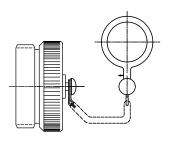
S1 ELECTRICAL PIN ASSIGNMENTS							
Pin	Symbol	Port	Lane	1/0	Logic Family		
1	CH1 XAUI 1 RX+	1	1	0	AC-Coupled, Internally Biased Differential XAUI		
2	CH2 XAUI 1 RX+	2	1	0	AC-Coupled, Internally Biased Differential XAUI		
3	CH1 XAUI 1 RX-	1	1	0	AC-Coupled, Internally Biased Differential XAUI		
4	CH2 XAUI 1 RX-	2	1	0	AC-Coupled, Internally Biased Differential XAUI		
5	CH1 XAUI 1 TX+	1	1	I	AC-Coupled, Internally Biased Differential XAUI		
6	CH2 XAUI 1 TX+	2	1	I	AC-Coupled, Internally Biased Differential XAUI		
7	CH1 XAUI 1 TX-	1	1	I	AC-Coupled, Internally Biased Differential XAUI		
8	CH2 XAUI 1 TX-	2	1	I	AC-Coupled, Internally Biased Differential XAUI		
9	CH1 XAUI 2 RX+	1	2	0	AC-Coupled, Internally Biased Differential XAUI		
10	CH2 XAUI 2 RX+	2	2	0	AC-Coupled, Internally Biased Differential XAUI		
11	CH1 XAUI 2 RX-	1	2	0	AC-Coupled, Internally Biased Differential XAUI		
12	CH2 XAUI 2 RX-	2	2	0	AC-Coupled, Internally Biased Differential XAUI		
13	CH1 XAUI 2 TX+	1	2	I	AC-Coupled, Internally Biased Differential XAUI		
14	CH2 XAUI 2 TX+	2	2	I	AC-Coupled, Internally Biased Differential XAUI		
15	CH1 XAUI 2 TX-	1	2	I	AC-Coupled, Internally Biased Differential XAUI		
16	CH2XAUI 2 TX-	2	2	I	AC-Coupled, Internally Biased Differential XAUI		
17	CH1 XAUI 3 RX+	1	3	0	AC-Coupled, Internally Biased Differential XAUI		
18	CH2 XAUI 3 RX+	2	3	0	AC-Coupled, Internally Biased Differential XAUI		
19	CH1 XAUI 3 RX-	1	3	0	AC-Coupled, Internally Biased Differential XAUI		
20	CH2 XAUI 3 RX-	2	3	0	AC-Coupled, Internally Biased Differential XAUI		
21	CH1XAUI 3 TX+	1	3	I	AC-Coupled, Internally Biased Differential XAUI		
22	CH2 XAUI 3 TX+	2	3	I	AC-Coupled, Internally Biased Differential XAUI		
23	CH1 XAUI 3 TX-	1	3	I	AC-Coupled, Internally Biased Differential XAUI		
24	CH2 XAUI 3 TX-	2	3	I	AC-Coupled, Internally Biased Differential XAUI		
25	CH1 XAUI 4 RX+	1	4	0	AC-Coupled, Internally Biased Differential XAUI		
26	CH2 XAUI 4 RX+	2	4	0	AC-Coupled, Internally Biased Differential XAUI		
27	CH1 XAUI 4 RX-	1	4	0	AC-Coupled, Internally Biased Differential XAUI		
28	CH2 XAUI 4 RX-	2	4	0	AC-Coupled, Internally Biased Differential XAUI		
29	CH1 XAUI 4 TX+	1	4	I	AC-Coupled, Internally Biased Differential XAUI		
30	CH2 XAUI 4 TX+	2	4	I	AC-Coupled, Internally Biased Differential XAUI		
31	CH1 XAUI 4 TX-	1	4	I	AC-Coupled, Internally Biased Differential XAUI		
32	CH2 XAUI 4 TX-	2	4	I	AC-Coupled, Internally Biased Differential XAUI		
33	5 V POWER	1/2	N/A	I	N/A		
34	5 V POWER	1/2	N/A	I	N/A		
35	GROUND	1/2	N/A	N/A	N/A		
36	GROUND	1/2	N/A	N/A	N/A		
37	MDIO	All	N/A	1/0	Open Drain LVTTL, Management Data Bus, Internal Pull-up		
38	MDC	All	N/A	I	LVTTL, Management Data Clock		
39	LOS_CH1/2	1/2	N/A	0	Open Drain CMOS, Logic High = Unsatisfactory Optical		
40	TX DIS_CH1 / 2	1/2	N/A	I	Input / Low=Satisfactory Optical Input LVTTL, Logic High=Off / Low=On		


S2 ELECTRICAL PIN ASSIGNMENTS					
Pin	Symbol	Port	Lane	1/0	Logic Family
1	CH3 XAUI 1 RX+	3	1	0	AC-Coupled, Internally Biased Differential XAUI
2	CH4 XAUI 1 RX+	4	1	0	AC-Coupled, Internally Biased Differential XAUI
3	CH3 XAUI 1 RX-	3	1	0	AC-Coupled, Internally Biased Differential XAUI
4	CH4 XAUI 1 RX-	4	1	0	AC-Coupled, Internally Biased Differential XAUI
5	CH3 XAUI 1 TX+	3	1	I	AC-Coupled, Internally Biased Differential XAUI
6	CH4 XAUI 1 TX+	4	1	I	AC-Coupled, Internally Biased Differential XAUI
7	CH3 XAUI 1 TX-	3	1	I	AC-Coupled, Internally Biased Differential XAUI
8	CH4 XAUI 1 TX-	4	1	I	AC-Coupled, Internally Biased Differential XAUI
9	CH3 XAUI 2 RX+	3	2	0	AC-Coupled, Internally Biased Differential XAUI
10	CH4 XAUI 2 RX+	4	2	0	AC-Coupled, Internally Biased Differential XAUI
11	CH3 XAUI 2 RX-	3	2	0	AC-Coupled, Internally Biased Differential XAUI
12	CH4 XAUI 2 RX-	4	2	0	AC-Coupled, Internally Biased Differential XAUI
13	CH3 XAUI 2 TX+	3	2	I	AC-Coupled, Internally Biased Differential XAUI
14	CH4 XAUI 2 TX+	4	2	I	AC-Coupled, Internally Biased Differential XAUI
15	CH3 XAUI 2 TX-	3	2	I	AC-Coupled, Internally Biased Differential XAUI
16	CH4XAUI 2 TX-	4	2	I	AC-Coupled, Internally Biased Differential XAUI
17	CH3 XAUI 3 RX+	3	3	0	AC-Coupled, Internally Biased Differential XAUI
18	CH4 XAUI 3 RX+	4	3	0	AC-Coupled, Internally Biased Differential XAUI
19	CH3 XAUI 3 RX-	3	3	0	AC-Coupled, Internally Biased Differential XAUI
20	CH4 XAUI 3 RX-	4	3	0	AC-Coupled, Internally Biased Differential XAUI
21	CH3XAUI 3 TX+	3	3	I	AC-Coupled, Internally Biased Differential XAUI
22	CH4 XAUI 3 TX+	4	3	I	AC-Coupled, Internally Biased Differential XAUI
23	CH3 XAUI 3 TX-	3	3	I	AC-Coupled, Internally Biased Differential XAUI
24	CH4 XAUI 3 TX-	4	3	I	AC-Coupled, Internally Biased Differential XAUI
25	CH3 XAUI 4 RX+	3	4	0	AC-Coupled, Internally Biased Differential XAUI
26	CH4 XAUI 4 RX+	4	4	0	AC-Coupled, Internally Biased Differential XAUI
27	CH3 XAUI 4 RX-	3	4	0	AC-Coupled, Internally Biased Differential XAUI
28	CH4 XAUI 4 RX-	4	4	0	AC-Coupled, Internally Biased Differential XAUI
29	CH3 XAUI 4 TX+	3	4	I	AC-Coupled, Internally Biased Differential XAUI
30	CH4 XAUI 4 TX+	4	4	I	AC-Coupled, Internally Biased Differential XAUI
31	CH3 XAUI 4 TX-	3	4	I	AC-Coupled, Internally Biased Differential XAUI
32	CH4 XAUI 4 TX-	4	4	I	AC-Coupled, Internally Biased Differential XAUI
33	5 V POWER	3/4	N/A	I	N/A
34	5 V POWER	3/4	N/A	I	N/A
35	GROUND	3 / 4	N/A	N/A	N/A
36	GROUND	3 / 4	N/A	N/A	N/A
37	SPARE	All	N/A	_	_
38	SPARE	All	N/A	_	_
39	LOS_CH3/4	3/4	N/A	0	Open Drain CMOS, Logic High = Unsatisfactory Optical
40	TX DIS_CH3 / 4	3 / 4	N/A	I	Input / Low = Satisfactory Optical Input LVTTL, Logic High = Off / Low = On

MIL-DTL-38999 FIBER OPTIC CABLE PLUG

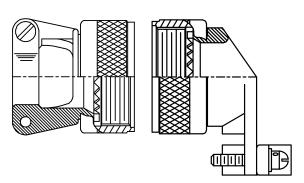
*See DSCC or SAE QPL for Approved Suppliers http://www.dscc.dla.mil/programs/qmlqpl/QPLdetail.asp?QPL=38999

D38999 PLUG - RECEPTACLE INSERT MIL-DTL-38999 CABLE PLUG

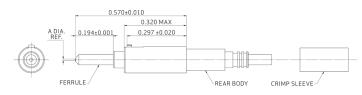

Consult Amphenol for appropriate mating connector part number

CABLE PROTECTION CAP D38999 / 32 PLUG PROTECTION CAP

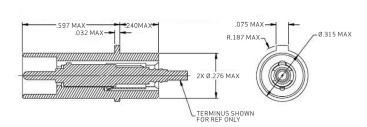
MS Plug Cap P/N


*D38999/32W25N

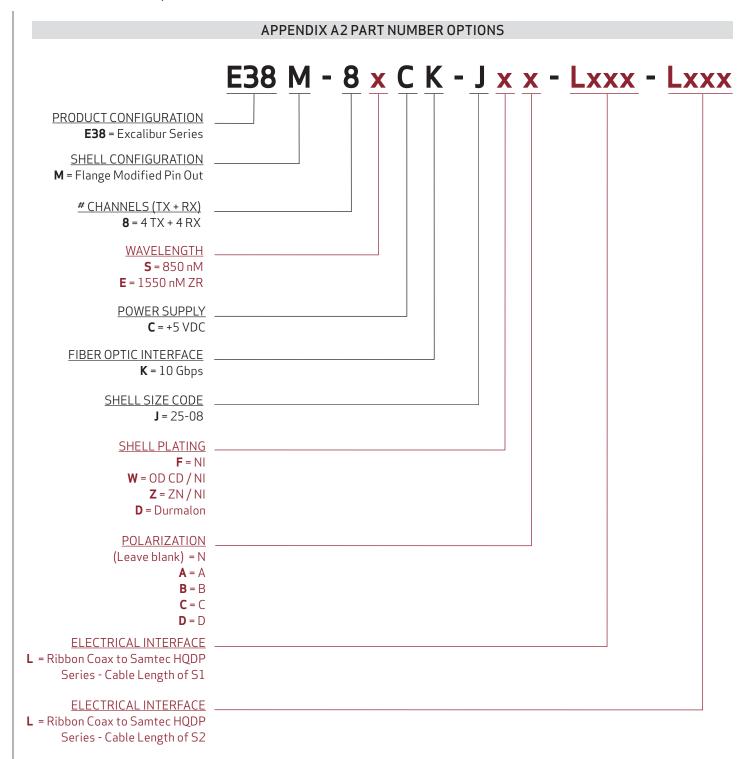
CABLE BACKSHELL MIL-C-85049 CABLE BACKSHELL


MS Backshell P/N

*MS85049 / XXXXXX**


**Straight or angled backshell - defined by application / mounting configuration

FIBER OPTIC TERMINUS ARINC 801 TERMINUS



- **Defined by fiber optic cable configuration
- ***Amphenol part number CF-198148-126

ARINC 801 SIZE 8 CAVITY REDUCER

- **Defined by fiber optic cable configuration
- ***Consult Amphenol for appropriate cavity reducer part number

192 Bob Fitz Road, Johnson City, TN 37615 salesmp@moog.com moogprotokraft.com