AEROSPACE AND DEFENSE | MOTION CONTROL PRODUCTS

MOTION CONTROL CATALOG BRUSHLESS AND BRUSH MOTORS, ALTERNATORS, RESOLVERS AND INTEGRATED ASSEMBLIES

MOTION TECHNOLOGY CATALOG INDEX

Direct Drive Brushless DC Motors	3-59
DB Matrix Series	3
AG Matrix Series	
Limited Rotation	
DB Brushless Torque	27
TD Series Limited Angle Toroidal	
Brush DC Motors	60-104
Brush Torque	60
Cube Torque	
Position Sensors	104-106
Military / Aerospace	
Integrated Mechanisms	
Product Summary	

Moog Inc. is a worldwide designer, manufacturer, and integrator of precision control components and systems. Moog's high-performance systems control military and commercial aircraft, satellites and space vehicles, launch vehicles, missiles, automated industrial machinery, marine and medical equipment.

Moog's Power and Data Sector, headquartered in Blacksburg, Virginia, is an innovative provider of power and data transfer solutions, motion control, and electronic products that are designed and manufactured to meet the demanding technical and environmental requirements of the defense and space markets. Moog products can be found on armored vehicles, electro-optic / infrared systems, helicopters, space satellites and other mission critical applications.

More information about Moog is available at www.moog.com.

DEFENSE | DIRECT DRIVE BRUSHLESS DC TORQUE MOTORS

DB MATRIX[™] SERIES FRAMELESS BRUSHLESS DC TORQUE MOTORS

The DB Matrix[®] Series brushless torque motors are used in applications that require high power density and / or quick accelerations. The designs are optimized to minimize input power for maximum efficiency.

Utilizing high energy rare earth magnets and dense slot fills, the DB Matrix Series achieves high Km values. This provides the highest performance per volume and minimizes the motor footprint within the system.

The motors are supplied as a direct drive rotor / stator frameless part set that is directly attached to the load. This form of attachment eliminates backlash and increases servo stiffness for an optimized direct drive system.

The DB Matrix Series is a family of motors consisting of a wide range of sizes, outside diameters from 1.5 to 22 inches (38 to 558.8 mm) with several stack sizes for each diameter.

Along with our standard Matrix motors, our engineers design custom solutions. If our existing models don't meet your needs, we will tailor them or provide options for a best value solution to meet your exact requirements.

FEATURES

- Compact
- Peak torques from 21 211 oz-in (.15 1.48 Nm)
- Double insulated high temp magnet wire minimizes leakage current and provides good thermal resistance
- Stable high temp encapsulation material minimizes movement or working of windings under large temperature variations
- Rare earth magnets
- High power density
- High torque to inertia ratio
- Low speed with high accuracy
- Large through bores

BENEFITS

- Operate over a wide range of speeds not limited to AC frequency
- Extremely quiet operation with long life capability
- Motor life is not limited to brush or commutator life
- Efficient operation without losses associate

TYPICAL APPLICATIONS

- Speed and rotation control systems
- Gimbals for FLIR and inertial navigation systems
- Stabilized gun and fire control systems for combat vehicles
- Fire control radars for land and shipboard defense
- Cockpit instrumentation for military and commercial aircraft
- Space and vacuum instruments, actuation systems and momentum wheels

DB MATRIX[™] SERIES OVERVIEW

A brushless DC torque motor is a motor which is electronically commutated and exhibits the linear speed torque characteristic of a conventional DC motor. The performance of the brushless DC motor is dependent on the commutation of current in the motor windings, which is controlled by a separate electronic controller. Most controllers require some type of position feedback for proper operation. Common feedback devices are Hall Effect sensors, resolvers and encoders. Moog offers all three types and provides technical assistance in choosing the correct sensor for your application.

Design Considerations

All diameters listed have finished ground lamination surfaces. They can be complemented with rings and hubs for mounting convenience. If you require a housing that may also include bearings, torquer motor, synchro, potentiometer, or similar components, we can design the entire assembly to meet your mechanical dimensions and performance requirements.

Mounting Considerations

Since torque motors are normally delivered in kit form, you provide the mounting surfaces and bearings. When you design the mechanics of the mount, be sure to observe these rules:

- 1. Eccentricities from the inner member mounting surface should not exceed 0.004 inches for rare earth motor designs.
- 2. The bore of the mounting surface should be perpendicular to the mounting seat within 0.002 inches for rare earth designs.

Electrical Considerations

For each mechanical configuration shown, different winding designs to modify torque, torque sensitivity, DC resistance, can be supplied by Moog to suit your system requirement. In each case, you have the option of selecting one of the existing designs or specifying a new winding designed to meet your exact requirements. For your specific power source (voltage and current), the mathematical relationships shown below in Table 1 will allow you to calculate a particular performance characteristic (for those listed) at the voltage or power capability of your existing power supply.

TABLE 1									
Parameter	Symbol	Units	Relationship To Published Parameter						
Electrical Time Constant	τ _E	ms	L _M / R _M						
Mechanical Time Constant	τ _M	ms	$J_{M} \bullet R_{M}$ $K_{E} \bullet K_{T}$						
Power Input, Stalled At Peak Torque (25°C)	P _p	watts	$V_p \bullet I_p$						
Viscous Damping Coefficients Zero Source Impedance Infinite Source Impedance	F _o F ₁	oz-in per rad/s oz-in per rad/s	$K_{T} \bullet K_{E}$ R_{M} Small % of F_{0}						
Motor Friction Torque (Actual)	T _F	oz-in	T _F						
Maximum Power Rate	Р	oz-in / s ²	T _P ² / J _M						
Maximum Theoretical Acceleration	∞ _M		T _p / J _M						
Theoretical No Load Speed	ω _{NL}		V _P / K _E						

 $^1\ T_{\rm F}$ is specified as a maximum value and includes brush friction, magnetic detent and test fixture bearing friction which is considered negligible.

 $^2~$ In cases where motor is to be operated at some voltage less than V_p due to power supply limitations the new $\omega_{_{NI}}$ becomes V_A / K_r where V_A = voltage applied.

OPTIONS

- Winding options to adjust torque sensitivity, back EMF, DC resistance for matching a variety of system requirements
- Varying stack lengths from 0.25 to 2.5 inches (6.35 to 63.5 mm)
- Mounting flanges, hubs, mounting holes and connectors may be added as required
- Hall effect sensors for commutation

Note: The following frame sizes represent only a small sampling of the total range manufactured. Consult factory for additional designs. Refer to our online documentation for product updates.

DB-1500 MATRIX[™] SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	DB-1500 J-1ES	DB-1500 K-1ES	DB-1500 L-1ES	DB-1500 M-1ES	DB-1500 N-1ES	DB-1500 P-1ES	DB-1500 Q-1ES	DB1500 R-1ES
Peak Torque, T _P	oz-in	21	43	64	85	106	126	170	212
Motor Constant, K_{M}	oz-in / √W	2.76	4.85	6.51	8.18	9.47	10.56	12.82	14.66
Number of Poles		8	8	8	8	8	8	8	8
Number of Phases		3"Y"	3"Y"						
Weight	oz (nom)	2.7	4.0	5.4	6.7	8.0	9.3	12	15
Motor Inertia, J_{M}	oz-in-s ²	9.08E-05	1.80E-04	2.68E-04	3.58E-04	4.46E-04	5.27E-040.4	7.14E-04	8.91E-04
Friction Torque, $T_{\rm F}$	oz-in	0.4	0.8	1.1	1.5	1.9	2.3	3.0	3.8
Electrical Time Constant, T _e	ms	0.28	0.44	0.54	0.63	0.69	0.72	0.78	0.82
Mechanical Time Constant, T_{M}	ms	1.68	1.09	0.895	0.759	0.703	0.670	0.617	0.589
*Temperature Rise, TPR'	°C/W	13.4	9.8	7.8	6.5	5.6	4.9	3.9	3.3
Sensors		No	No						

MOTOR WINDING CONSTANTS

Specification	Units	DB-1500 J-1ES	DB-1500 K-1ES	DB-1500 L-1ES	DB-1500 M-1ES	DB-1500 N-1ES	DB-1500 P-1ES	DB-1500 Q-1ES	DB-1500 R-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	1.43	2.85	4.24	5.66	7.05	8.37	11.3	14.1
Back EMF, K _e	V per rad/s \pm 10%	0.010	0.020	0.030	0.040	0.050	0.059	0.080	0.100
Terminal Resistance, $\mathrm{R}_{\!\scriptscriptstyle M}$	ohms ± 10%	0.268	0.346	0.424	0.479	0.554	0.628	0.777	0.925
Terminal Inductance, L_{M}	mH ± 30%	0.076	0.15	0.23	0.30	0.38	0.46	0.61	0.76
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	4.0	5.2	6.4	7.2	8.3	9.4	1.7	13.9
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	15	15	15	15	15	15	15	15

*TPR as listed on the data sheets, is for an unmounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the unmounted TPR. For air flow, the TPR may be less than 25% the unmounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for more accurate estimate of the motor's TPR.

**Stack lengths from 0.25 to 2.5 inches (6.35 to 63.5 mm). The frame size represented is only a small sampling of the total range manufactured. Consult factory for additional designs. Refer to our online documentation for product updates.

Modular	"A" Inches	"B" Inches
DB-1500-J-1ES	0.250	0.310
DB-1500-K-1ES	0.500	0.575
DB-1500-L-1ES	0.750	0.835
DB-1500-M-1ES	1.000	1.100
DB-1500-N-1ES	1.250	1.360
DB-1500-P-1ES	1.500	1.625
DB-1500-Q-1ES	2.00	2.150
DB-1500-R-1ES	2.500	2.675

DB-2000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	DB-2000 A-1ES	DB-2000 B-1ES	DB-2000 C-1ES	DB-2000 D-1ES	DB-2000 E-1ES	DB-2000 F-1ES	DB-2000 G-1ES	DB-2000 H-1ES
Peak Torque, T _P	oz-in	34.4	67	99	126	192	256	313	376
Motor Constant, K _M	oz-in / √W	4.75	8.18	11.0	12.8	17.1	20.5	23.1	25.7
Number of Poles		8	8	8	8	8	8	8	8
Number of Phases		3	3	3	3	3	3	3	3
Weight	oz (nom)	4.0	6.65	9.2	12	17	22	27	33
Motor Inertia, J _M	oz-in-s ²	2.20E-04	4.41E-04	6.59E-04	8.89E-04	1.32E-03	1.76E-03	2.20E-03	2.64E-03
Friction Torque, T _F	oz-in	1.0	2.0	3.0	4.0	6.0	8.0	10	12
Electrical Time Constant, T _e	ms	0.48	0.74	0.91	1.0	1.2	1.3	1.4	1.4
Mechanical Time Constant, $T_{\rm M}$	ms	1.38	0.933	0.777	0.767	0.638	0.591	0.584	0.565
*Temperature Rise, TPR'	°C/W	11.0	8.4	6.8	5.8	4.4	3.6	3.0	2.6
Sensors		No							

MOTOR WINDING CONSTANTS

Specification	Units	DB-2000 A-1ES	DB-2000 B-1ES	DB-2000 C-1ES	DB-2000 D-1ES	DB-2000 E-1ES	DB-2000 F-1ES	DB-2000 G-1ES	DB2000 H-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	6.89	13.4	19.8	25.2	38.4	51.1	62.7	75.2
Back EMF, K _e	V per rad/s \pm 10%	0.0486	0.0947	0.140	0.178	0.271	0.361	0.443	0.531
Terminal Resistance, R_{M}	ohms ± 10%	2.10	2.68	3.27	3.87	5.04	6.21	7.38	8.55
Terminal Inductance, L_{M}	mH ± 30%	1.0	2.0	3.0	4.0	6.0	8.0	10	12
Voltage, Stalled at Peak Torque, V_{P}	volts	10.5	13.4	16.4	19.3	25.2	31.0	36.9	42.8
Amps at Peak Torque, I_{P}	amps	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00

*TPR as listed on the data sheets, is for an unmounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the unmounted TPR. For air flow, the TPR may be less than 25% the unmounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for more accurate estimate of the motor's TPR.

**Stack lengths from 0.10 to 4.00 inches (2.54 to 101.6 mm) with KT to 4.49 N.m/amp. The frame size represented is only a small sampling of the total range manufactured. Consult factory for additional designs. Refer to our online documentation for product updates.

Modular	"A" Inches	"B" Inches
DB-2000-A-1ES	.250	.275
DB-2000-B-1ES	.500	.540
DB-2000-C-1ES	.750	.805
DB-2000-D-1ES	1.000	1.065
DB-2000-E-1ES	1.500	1.595
DB-2000-F-1ES	2.000	2.120
DB-2000-G-1ES	2.500	2.650
DB-2000-H-1ES	3.000	3.175

DBE-2000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	DBE-2000 A-1ES	DBE-2000 B-1ES	DBE-2000 C-1ES	DBE-2000 D-1ES	DBE-2000 E-1ES	DBE-2000 F-1ES	DBE-2000 G-1ES	DBE-2000 H-1ES
Peak Torque, T _P	oz-in	43	75	100	126	192	256	315	377
Motor Constant, K_{M}	oz-in / √W	5.93	9.16	11.1	12.8	17.1	20.6	23.2	25.8
Number of Poles		8	8	8	8	8	8	8	8
Number of Phases		3	3	3	3	3	3	3	3
Weight	oz (nom)	4.6	7.6	10.1	13	18	23	28	34
Motor Inertia, J_{M}	oz-in-s ²	4.41E-04	6.59E-04	8.81E-04	1.10E-03	1.54E-03	1.98E-03	2.41E-03	2.85E-03
Friction Torque, T _F	oz-in	1.0	2.0	3.0	4.00	6.0	8.0	10	12
Electrical Time Constant, T _e	ms	0.48	0.74	0.92	1.0	1.2	1.3	1.4	1.4
Mechanical Time Constant, $T_{\rm M}$	ms	1.77	1.11	1.02	0.949	0.741	0.660	0.638	0.606
*Temperature Rise, TPR'	°C/W	11.0	8.4	6.8	5.8	4.4	3.6	3.0	2.6
Sensors		Yes							

MOTOR WINDING CONSTANTS

Specification	Units	DBE-2000 A-1ES	DBE-2000 B-1ES	DBE-2000 C-1ES	DBE-2000 D-1ES	DBE-2000 E-1ES	DBE-2000 F-1ES	DBE-2000 G-1ES	DBE-2000 H-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp \pm 10%	8.60	15.0	20	25.2	38.5	51.3	62.9	75.5
Back EMF, K _E	V per rad/s \pm 10%	0.0607	0.106	0.141	0.178	0.272	0.362	0.444	0.533
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms ± 10%	2.10	2.68	3.27	3.87	5.04	6.21	7.38	8.55
Terminal Inductance, L_{M}	mH ± 30%	1.0	2.0	3.0	4.0	6.0	8.0	10	12
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	10.5	13.4	16.4	19.3	25.2	31.0	36.9	42.8
Amps at Peak Torque, $I_{\scriptscriptstyle P}$	amps	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.10 to 4.00 inches (2.54 to 101.6 mm) with K_T to 4.49 N.m/amp. Consult factory for additional designs. Refer to our online documentation for product updates.

MECHANICAL DIMENSIONS (INCHES) .245 MAX. .010 MOUNTING DIMENSION Ø 2.000 +.000 -.002 2X Ø 1.845 Ø 1 058 MAX MIN. Ø.375 ±.001 th 9 A GREEN .150 MAX. Dimensions and tolerances are in accordance with ASME Y14.5 - 1994 ∽ B ORANGE C WHITE of WYE CONNECTED

Modular	"A" Inches	"B" Inches
DBE-2000-A-1ES	0.250	0.540
DBE-2000-B-1ES	0.500	0.805
DBE-2000-C-1ES	0.750	1.065
DBE-2000-D-1ES	1.000	0.330
DBE-2000-E-1ES	1.500	1.860
DBE-2000-F-1ES	2.000	2.385
DBE-2000-G-1ES	2.500	2.915
DBE-2000-H-1ES	3.000	3.440

DB-3000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

				<u> </u>			
Specification	Units	DB-3000 F-1ES	DB-3000 G-1ES	DB-3000 H-1ES	DB-3000 J-1ES	DB-3000 K-1ES	DB-3000 L-1ES
Peak Torque, T _P	oz-in	151	302	545	604	909	1214
Motor Constant, K_{M}	oz-in / √W	10.4	18.7	25.8	31.8	42.4	51.3
Number of Poles		12	12	12	12	12	12
Number of Phases		3"Y"	3"Y"	3"Y"	3"Y"	3"Y"	3"Y"
Weight	oz (nom)	8.5	15	18	22	31	41
Motor Inertia, J _M	oz-in-s ²	2.11E-03	4.17E-03	6.25E-03	8.32E-03	1.17E-02	1.58E-02
Friction Torque, $T_{\rm F}$	oz-in	3.0	5.0	8.0	10	16	20
Electrical Time Constant, T _e	ms	0.7	1.1	1.4	1.6	1.9	2.1
Mechanical Time Constant, $T_{\rm M}$	ms	2.75	1.69	1.33	1.16	0.92	0.85
*Temperature Rise, TPR'	°C/W	6.3	5.0	4.1	3.5	2.7	2.2
Sensors		No	No	No	No	No	No

MOTOR WINDING CONSTANTS

Specification	Units	DB-3000 F-1ES	DB-3000 G-1ES	DB-3000 H-1ES	DB-3000 J-1ES	DB-3000 K-1ES	DB-3000 L-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	15.1	30.2	45.4	60.4	90.9	121
Back EMF, K _e	V per rad/s \pm 10%	0.107	0.213	0.321	0.427	0.642	0.855
Terminal Resistance, $R_{\rm M}$	ohms ± 10%	2.11	2.61	3.10	3.60	4.59	5.59
Terminal Inductance, L_{M}	mH ± 30%	1.4	2.9	4.3	5.7	8.6	11
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	21.1	26.1	31.0	36.0	45.9	55.9
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	10	10	10	10	10	10

*TPR as listed on the data sheets, is for an un-mounted condition unless othenwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.10 to 6.00 inches (2.54 to 125.4 mm) with K₁ to 32.5 N.m/amp. Consult factory for additional designs. Refer to our online documentation for product updates.

MOUNTING DIMENSIONS

Modular	"A" Inches	"B" Inches
DB-3000-F-1ES	.250	.290
DB-3000-G-1ES	.500	.565
DB-3000-H-1ES	.750	.845
DB-3000-J-1ES	1.000	1.120
DB-3000-K-1ES	1.500	1.570
DB-3000-L-1ES	2.00	2.125

8

DB-4000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	DB-4000 B-1ES	DB-4000 C-1ES	DB-4000 D-1ES	DB-4000 E-1ES
Peak Torque, T _P	oz-in	2000	3000	4000	5000
Motor Constant, K_{M}	oz-in / √W	67.2	91.0	111.5	129.7
Number of Poles		6	6	6	6
Number of Phases		3"Y"	3"Y"	3"Y"	3"Y"
Weight	oz (nom)	94.4	136	177.6	217.6
Motor Inertia, J _M	oz-in-s ²	3.65E-02	5.50E-02	7.35E-02	9.20E-02
Friction Torque, T _F	oz-in	10	15	20	25
Electrical Time Constant, T _e	ms	3.27	3.92	4.44	4.76
Mechanical Time Constant, T_{M}	ms	1.15	0.94	0.84	0.77
*Temperature Rise, TPR'	°C/W	1.6	1.2	1.0	0.8
Sensors		No	No	No	No

MOTOR WINDING CONSTANTS

Specification	Units	DB-4000 B-1ES	DB-4000 C-1ES	DB-4000 D-1ES	DB-4000 E-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	66.5	99.7	132.9	166.1
Back EMF, K _e	V per rad/s \pm 10%	0.469	0.704	0.938	1.173
Terminal Resistance, R_{M}	ohms ± 10%	0.98	1.20	1.42	1.64
Terminal Inductance, L_{M}	mH ± 30%	3.2	4.7	6.3	7.8
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	29.5	36.0	42.6	49.4
Amps at Peak Torque, $I_{\scriptscriptstyle P}$	amps	30.1	30.0	30.0	30.1

Integral Horsepower Design Maximums: 650 VDC, 12,000 RPM, 7% $\rm K_{T}$ roll off at $\rm I_{P}$

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR.

**Stack lengths from 0.25 to 8.00 inches (6.35 to 203.2 mm) with K₇ to 47.6 N.m/amp. Consult factory for additional designs. Refer to our online documentation for product updates.

Modular	"A" Inches	"B" Inches
DB-4000-B-1ES	2.000	2.095
DB-4000-C-1ES	3.000	3.136
DB-4000-D-1ES	4.000	4.180
DB-4000-E-1ES	5.000	5.222

DB-5000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

					<u> </u>				
Specification	Units	DB-5000 A-1ES	DB-5000 B-1ES	DB-5000 C-1ES	DB-5000 D-1ES	DB-5000 E-1ES	DB-5000 F-1ES	DB-5000 G-1ES	DB-5000 H-1ES
Peak Torque, T _P	oz-in	578	1207	2298	3444	4536	5644	6768	9024
Motor Constant, K_{M}	oz-in / √W	22.2	42.5	71.6	97.3	118.0	137.0	155.0	186.0
Number of Poles		12	12	12	12	12	12	12	12
Number of Phases		3"Y"							
Weight	oz (nom)	31	48	74	104	135	165	200	255
Motor Inertia, J _M	oz-in-s ²	1.89E-02	3.84E-02	7.10E-02	1.04E-01	1.36E-01	1.69E-01	2.03E-01	2.68E-01
Friction Torque, T _F	oz-in	4.5	10	19	28	38	47	56	76
Electrical Time Constant, T _e	ms	1.4	2.5	3.7	4.5	5.1	5.5	5.9	6.3
Mechanical Time Constant, T_{M}	ms	5.45	3.02	1.96	1.55	1.38	1.27	1.20	1.10
*Temperature Rise, TPR'	°C/W	2.7	2.3	1.7	1.4	1.2	1.0	0.9	0.8
Sensors		No							

MOTOR WINDING CONSTANTS

Specification	Units	DB-5000 A-1ES	DB-5000 B-1ES	DB-5000 C-1ES	DB-5000 D-1ES	DB-5000 E-1ES	DB-5000 F-1ES	DB-5000 G-1ES	DB-5000 H-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	72	151	287	430	567	705	846	1128
Back EMF, K _e	V per rad/s ± 10%	0.509	1.07	2.03	3.04	4.00	4.98	5.97	7.97
Terminal Resistance, R_{M}	ohms ± 10%	10.6	12.6	16.1	19.6	23.0	26.5	29.9	36.8
Terminal Inductance, L_{M}	mH ± 30%	14	32	60	89	118	147	175	233
Voltage, Stalled at Peak Torque, V_{P}	volts	84.6	101	129	156	184	212	239	295
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.25 to 10.00 inches (6.35 to 254 mm) with K₁ to 125 N.m/ampConsult factory for additional designs. Refer to our online documentation for product updates.

MECHANICAL DIMENSIONS (INCHES)

Dimensions and tolerances are in accordance with ASME Y14.5 - 1994

Modular	"A" Inches	"B" Inches
DB-5000-A-1ES	.250	.300
DB-5000-B-1ES	.550	.600
DB-5000-C-1ES	1.050	1.100
DB-5000-D-1ES	1.550	1.600
DB-5000-E-1ES	2.050	2.100
DB-5000-F-1ES	2.550	2.610
DB-5000-G-1ES	3.050	3.125
DB-5000-H-1ES	4.050	4.125

DB-6000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

				<u> </u>			
Specification	Units	DB-6000 B-1ES	DB-6000 C-1ES	DB-6000 D-1ES	DB-6000 E-1ES	DB-6000 F-1ES	DB-6000 G-1ES
Peak Torque, T _P	oz-in	10083	8407	6727	5048	3368	1686
Motor Constant, $K_{\rm M}$	oz-in / √W	270	243	213	178	137	80.4
Number of Poles		32	32	32	32	32	32
Number of Phases		3"Y"	3"Y"	3"Y"	3"Y"	3"Y"	3"Y"
Weight	oz (nom)	160	139	114	88	62	37
Motor Inertia, J _M	oz-in-s ²	0.637	0.532	0.427	0.321	0.216	0.111
Friction Torque, T _F	oz-in	125	104	83	62	42	19
Electrical Time Constant, T _e	ms	1.92	1.87	1.76	1.65	1.47	0.91
Mechanical Time Constant, T_{M}	ms	1.24	1.27	1.34	1.43	1.62	2.43
*Temperature Rise, TPR'	°C/W	0.72	0.90	1.1	1.3	1.7	2.4
Sensors		No	No	No	No	No	No

MOTOR WINDING CONSTANTS

Specification	Units	DB-6000 B-1ES	DB-6000 C-1ES	DB-6000 D-1ES	DB-6000 E-1ES	DB-6000 F-1ES	DB-6000 G-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	504	420	336	252	168	84.3
Back EMF, K _e	V per rad/s \pm 10%	3.56	2.97	2.38	1.78	1.19	0.595
Terminal Resistance, R_{M}	ohms ± 10%	3.48	2.99	2.50	2.00	1.50	1.10
Terminal Inductance, L_{M}	mH ± 30%	6.7	5.6	4.4	3.3	2.2	1.0
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	69.8	59.9	50.0	40.0	30.0	22.0
Amps at Peak Torque, I_{P}	amps	20	20	20	20	20	20

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.10 to 6.00 inches (2.54 to 125.4 mm) with K₇ to 32.5 N.m/amp. Consult factory for additional designs. Refer to our online documentation for product updates.

Modular	"A" Inches	"B" Inches
DB-6000-B-1ES	2.950	3.050
DB-6000-C-1ES	2.450	2.550
DB-6000-D-1ES	1.950	2.050
DB-6000-E-1ES	1.450	1.550
DB-6000-F-1ES	0.950	1.050
DB-6000-G-1ES	0.450	0.550

DBE-6000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

				<u> </u>			
Specification	Units	DBE-6000 B-2ES	DBE-6000 C-2ES	DBE-6000 D-2ES	DBE-6000 E-2ES	DBE-6000 F-2ES	DBE-6000 G-2ES
Peak Torque, T _P	oz-in	52.5	44	35	26.3	17.5	8.8
Motor Constant, K_{M}	oz-in / √W	1.41	1.27	1.11	0.93	0.72	0.419
Number of Poles		32	32	32	32	32	32
Number of Phases		3"Y"	3"Y"	3"Y"	3"Y"	3"Y"	3"Y"
Weight	oz (nom)	10.5	9.2	7.6	6.0	4.4	2.8
Motor Inertia, J_{M}	oz-in-s ²	3.54 x 10⁻³	3.04 x 10⁻³	2.50 x 10⁻³	1.95 x 10⁻³	1.40 x 10 ⁻³	8.51 x 10 ⁻⁴
Friction Torque, T _F	oz-in	0.65	0.54	0.43	0.32	0.22	0.10
Electrical Time Constant, T _E	ms	1.9	1.9	1.8	1.7	1.4	1.0
Mechanical Time Constant, $T_{\rm M}$	ms	1.32	1.40	1.50	1.67	2.02	3.28
*Temperature Rise, TPR'	°C/W	0.72	0.90	1.1	1.3	1.7	2.4
Sensors		Yes	Yes	Yes	Yes	Yes	Yes

MOTOR WINDING CONSTANTS

Specification	Units	DBE-6000 B-2ES	DBE-6000 C-2ES	DBE-6000 D-2ES	DBE-6000 E-2ES	DBE-6000 F-2ES	DBE-6000 G-2ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	2.63	2.19	1.75	1.31	0.875	0.439
Back EMF, K _e	V per rad/s ± 10%	3.56	2.97	2.38	1.78	1.19	0.595
Terminal Resistance, R_{M}	ohms ± 10%	3.48	2.99	2.5	2.00	1.50	1.10
Terminal Inductance, L_{M}	mH ± 30%	6.7	5.6	4.4	3.3	2.2	1.0
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	69.8	59.9	50.0	40.0	30.0	22.0
Amps at Peak Torque, I _P	amps	20.0	20.0	20.0	20.0	20.0	20.0

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR.

MOUNTING DIMENSIONS

Modular	"A" Inches	"B" Inches
DBE-6000-B-2ES	2.950	3.300
DBE-6000-C-2ES	2.450	2.800
DBE-6000-D-2ES	1.950	2.300
DBE-6000-E-2ES	1.450	1.800
DBE-6000-F-2ES	0.950	1.300
DBE-6000-G-2ES	0.450	0.800

12

DB-8000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

				<u> </u>		
Specification	Units	DB-8000 A-1ES	DB-8000 B-1ES	DB-8000 C-1ES	DB-8000 D-1ES	DB-8000 E-1ES
Peak Torque, T _P	oz-in	18.8	37.7	58.4	75.4	96.1
Motor Constant, K_{M}	oz-in / √W	0.75	1.30	1.74	2.06	2.4
Number of Poles		32	32	32	32	32
Number of Phases		3	3	3	3	3
Weight	oz (nom)	5.2	9.0	13.2	16.6	20.5
Motor Inertia, J_{M}	oz-in-s ²	2.1 x 10-3	3.4 x 10-3	5.5 x 10-3	6.8 x 10-3	8.3 x 10-3
Friction Torque, T _F	oz-in	0.11	0.22	0.34	0.44	0.57
Electrical Time Constant, T _E	ms	0.50	0.69	0.80	0.87	0.90
Mechanical Time Constant, $T_{\rm M}$	ms	19.0	13.1	11.1	10.3	9.7
*Temperature Rise, TPR'	°C/W	1.3	1.0	0.83	0.71	0.62
Sensors		Yes	Yes	Yes	Yes	Yes

MOTOR WINDING CONSTANTS

Specification	Units	DB-8000 A-1ES	DB-8000 B-1ES	DB-8000 C-1ES	DB-8000 D-1ES	DB-8000 E-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	1.30	2.60	4.03	5.20	6.63
Back EMF, K _e	V per rad/s \pm 10%	1.76	3.48	5.37	6.92	8.64
Terminal Resistance, R _M	ohms ± 10%	2.80	3.90	5.10	6.10	7.20
Terminal Inductance, L_{M}	mH ± 30%	1.4	2.7	4.1	5.3	6.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	40.6	56.9	75.0	89.7	106
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	14.5	14.6	14.7	14.7	14.7

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR.

Modular	"A" Inches	"B" Inches	"C" Inches
DB-8000-B-1ES	0.520	0.715	1.20
DB-8000-C-1ES	1.020	1.165	1.700
DB-8000-D-1ES	1.570	1.873	2.250
DB-8000-E-1ES	2.020	2.323	2.700
DB-8000-F-1ES	2.520	2.839	3.200
DB-8000-G-1ES	0.450	0.550	0.550

DBE-8000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

				<u> </u>			
Specification	Units	DBE-8000 A-1ES	DBE-8000 B-1ES	DBE-8000 C-1ES	DBE-8000 D-1ES	DBE-8000 E-1ES	DBE-8000 F-1ES
Peak Torque, T _P	oz-in	18.8	37.7	58.4	75.4	96.1	9.7
Motor Constant, $K_{\rm M}$	oz-in / √W	0.75	1.30	1.74	2.06	2.4	0.43
Number of Poles		32	32	32	32	32	32
Number of Phases		3	3	3	3	3	3
Weight	oz (nom)	5.2	9.0	13.2	16.6	20.5	3.53
Motor Inertia, J _M	oz-in-s ²	2.1 x 10-3	3.4 x 10-3	5.5 x 10-3	6.8 x 10-3	8.3 x 10-3	1.3 x 10-3
Friction Torque, T _F	oz-in	0.11	0.22	0.34	0.44	0.57	6.2
Electrical Time Constant, T _e	ms	1.4	2.0	2.3	2.5	2.7	0.97
Mechanical Time Constant, $T_{\rm M}$	ms	2.8	1.5	1.3	1.2	1.1	5.3
*Temperature Rise, TPR'	°C/W	1.3	1.0	0.82	0.71	0.61	1.5
Sensors		Yes	Yes	Yes	Yes	Yes	Yes

MOTOR WINDING CONSTANTS

Specification	Units	DBE-8000 A-1ES	DBE-8000 B-1ES	DBE-8000 C-1ES	DBE-8000 D-1ES	DBE-8000 E-1ES	DBE-8000 F-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	1.30	2.60	4.03	5.20	6.63	0.670
Back EMF, K _e	V per rad/s ± 10%	1.76	3.46	5.47	7.05	8.99	0.910
Terminal Resistance, R _M	ohms ± 10%	3.04	4.10	5.34	6.36	7.61	2.47
Terminal Inductance, L_{M}	mH ± 30%	4.1	8.0	12	16	20	2.4
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	44.1	59.5	77.5	92.3	111	35.8
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	14.5	14.5	14.5	14.5	14.5	14.5

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.25 to 16.00 inches (6.35 to 406.4 mm) with KT to 717 N.m/amp. Consult factory for additional designs. Refer to our online documentation for product updates.

Modular	"A" Inches	"B" Inches
DBE-8000-A-1ES	0.500	0.715
DBE-8000-B-1ES	1.000	1.165
DBE-8000-C-1ES	1.550	1.873
DBE-8000-D-1ES	2.000	2.323
DBE-8000-E-1ES	2.500	2.839
DBE-8000-F-1ES	0.250	0.445

DB-9000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

				<u> </u>		
Specification	Units	DB-9000 G-1ES	DB-9000 H-1ES	DB-9000 I-1ES	DB-9000 J-1ES	DB-9000 K-1ES
Peak Torque, T _P	oz-in	5102	10232	15338	25560	30665
Motor Constant, K_{M}	oz-in / √W	176	304	405	568	636
Number of Poles		32	32	32	32	32
Number of Phases		3"Y"	3"Y"	3"Y"	3"Y"	3"Y"
Weight	oz (nom)	75	131	192	304	357
Motor Inertia, J _M	oz-in-s ²	0.518	1.01	1.50	2.47	2.96
Friction Torque, T _F	oz-in	53	112	171	289	348
Electrical Time Constant, T _e	ms	1.24	1.94	2.35	2.76	2.93
Mechanical Time Constant, T_{M}	ms	2.36	1.55	1.29	1.09	1.04
*Temperature Rise, TPR'	°C/W	1.3	0.99	0.79	0.57	0.50
Sensors		No	No	No	No	No

MOTOR WINDING CONSTANTS

Specification	Units	DB-9000 G-1ES	DB-9000 H-1ES	DB-9000 I-1ES	DB-9000 J-1ES	DB-9000 K-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	255	512	767	1278	1533
Back EMF, K _e	V per rad/s ± 10%	1.80	3.61	5.42	9.03	10.8
Terminal Resistance, R_{M}	ohms ± 10%	2.09	2.83	3.58	5.07	5.81
Terminal Inductance, L_{M}	mH ± 30%	2.6	5.5	8.4	14	17
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	41.8	56.6	71.6	101	116
Amps at Peak Torque, I _P	amps	20	20	20	20	20

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.25 to 18.00 inches (6.35 to 457.2 mm) with KT to 1062 N.m/amp. Consult factory for additional designs. Refer to our online documentation for product updates.

Modular	"A" Inches	"B" Inches
---------	------------	------------

DB-9000-G-1ES	0.450	0.550
DB-9000-H-1ES	0.950	1.050
DB-9000-I-1ES	1.450	1.550
DB-9000-J-1ES	2.450	2.550
DB-9000-K-1ES	2.950	3.050

DB-14540 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

				_		
Specification	Units	DB-14540 A-1ES	DB-14540 B-1ES	DB-14540 C-1ES	DB-14540 D-1ES	DB-14540 E-1ES
Peak Torque, T _P	oz-in	21674	43273	67041	86523	108319
Motor Constant, K _M	oz-in / √W	324	579	812	976	1142
Number of Poles		32	32	32	32	32
Number of Phases		3"Y"	3"Y"	3"Y"	3"Y"	3"Y"
Weight	oz (nom)	171	312	464	584	720
Motor Inertia, J _M	oz-in-s ²	5.22	8.52	13.7	17.0	20.8
Friction Torque, T _F	oz-in	64	128	200	256	320
Electrical Time Constant, T _e	ms	1.03	1.66	2.09	2.35	2.55
Mechanical Time Constant, T_{M}	ms	7.05	3.59	2.95	2.53	2.26
*Temperature Rise, TPR'	°C/W	0.74	0.57	0.46	0.39	0.34
Sensors		No	No	No	No	No

MOTOR WINDING CONSTANTS

Specification	Units	DB-14540 A-1ES	DB-14540 B-1ES	DB-14540 C-1ES	DB-14540 D-1ES	DB-14540 E-1ES
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp ± 10%	639	1265	1955	2515	3149
Back EMF, K _e	V per rad/s \pm 10%	4.52	8.94	13.8	17.8	22.2
Terminal Resistance, R_{M}	ohms ± 10%	3.90	4.77	5.80	6.64	7.60
Terminal Inductance, L_{M}	mH ± 30%	4.0	7.9	12	16	19
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	132	163	199	228	261
Amps at Peak Torque, $I_{\scriptscriptstyle P}$	amps	33.9	34.2	34.3	34.4	34.4

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.25 to 18.00 inches (6.35 to 457.2 mm) with KT to 1062 N.m/amp. Consult factory for additional designs. Refer to our online documentation for product updates.

Modular	"A" Inches	"B" Inches	"C" Inches
DB-14540-A-1ES	0.520	0.715	1.20
DB-14540-B-1ES	1.020	1.165	1.700
DB-14540-C-1ES	1.570	1.873	2.250
DB-14540-D-1ES	2.020	2.323	2.700
DB-14540-E-1ES	2.520	2.839	3.200

DB-22000 MATRIX SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	DB-22000 -A	DB-22000 -B	DB-22000 -C	DB-22000 -D	DB-22000 -E	DB-22000 -F	DB-22000 -G
Peak Torque, T _P	lb.ft	535	1035	1542	2040	2539	3037	3535
Motor Constant, K _M	lb.ft/√W	6.34	10.7	14.3	17.4	20.0	22.5	24.7
Electrical Time Constant, E	ms	1.8	2.8	3.3	3.7	4.0	4.2	4.4
Mechanical Time Constant, M	ms	5.92	3.91	3.21	2.88	2.68	2.55	2.46
Power, Input, Stalled at T_p -P _p	watts	7132	9361	11591	13820	16050	18280	20509
Viscous Damping Coefficient Zero Source Impedance - F _o	lb.ft per rad/s	54	155	278	408	545	684	826
Friction Torque, T _F	lb.ft	0.73	1.2	2.2	2.9	3.7	4.4	5.1
Maximum Winding Temperature	°C	155	155	155	155	155	155	155
Temperature Rise Per Watt-TPR	°C/Watt	0.35	0.25	0.19	0.16	0.13	0.12	0.10
Number of Poles		48	48	48	48	48	48	48
Rotor Inertia - J _M	lb.ft.s ²	3.22E-01	6.06E-01	8.92E-01	1.18E+00	1.46E+00	1.74E+00	2.03E+00
Weight	lb.	48	82	115	148	181	214	248

MOTOR WINDING CONSTANTS

Specification	Units	DB-22000 -A	DB-22000 -B	DB-22000 -C	DB-22000 -D	DB-22000 -E	DB-22000 -F	DB-22000 -G
Voltage, Stalled at V_P	Volts	178	234	290	346	401	457	513
Peak Current - 1 _P	Amperes	40.0	40.0	40.0	40.0	40.0	40.0	40.0
DC Resistance - R _M	Ohms	4.46	5.85	7.24	8.64	10.0	11.4	12.8
**Torque Sensitivity, K_{T}	lb.ft/amp	13.4	25.9	38.5	51.0	63.5	75.9	88.4
Back EMF Constant K _E	V per rad/s	18.1	35.1	52.3	69.2	86.0	103	120
Inductance - L _M	mH	8.1	16	24	32	40	48	56

*TPR as listed on the data sheets, is for an un-mounted condition unless otherwise noted. Mounted TPR values are often 50% or less than the un-mounted TPR. For air flow, the TPR may be less than 25% the un-mounted amount and for fluid cooling it may be 10% or less. Many factors affect the TPR value and its change relative to the mounting or external cooling applied. Consult the factory for an more accurate estimate of the motor's TPR. **Stack lengths from 0.5 to 7.00 inches (12.7 to 177.8 mm) with K₁ to 88.5 lb.ft/amp

MOUNTING DIMENSIONS

Modular	"A" Inches	"B" Inches
DB-22000-A	1.000	1.150
DB-22000-B	2.000	2.150
DB-22000-C	3.000	3.150
DB-22000-D	4.000	4.150
DB-22000-E	5.000	5.150
DB-22000-F	6.000	6.150
DB-22000-G	7.000	7.150
⊘ A GRE	EEN	

Dimensions and tolerances are in accordance with ASME Y14.5 - 1994

C WHITE O ° B ORANGE

WYE CONNECTED

AG MATRIX[™] SERIES FRAMELESS PERMANENT MAGNET ALTERNATORS

The AG Matrix[™] Series alternators are used in applications that require high power density. The designs are optimized for maximum output power and maximum efficiency. Utilizing high energy rare earth magnets and dense slot fills, the AG Series achieves higher AC output power. This provides the highest performance per volume and minimizes the alternators footprint within the system.

The alternators are supplied as a direct drive rotor / stator frameless part set that is directly attached to the load. This form of attachment eliminates backlash and increases stiffness for an optimized direct drive system.

The AG Matrix Series is a family of alternators consisting of a wide range of sizes, outside diameters from 5.25 to 22 inches (133.35 mm to 558.8 mm) with multiple stack sizes and winding options for each diameter.

Along with our standard Matrix alternators, our engineers design custom solutions. If our existing models don't meet your needs, we will tailor them or provide options for a best value solution to meet your exact requirements.

FEATURES

- Compact
- Continuous AC output power from 345 W to over 36 kW
- Double insulated high temp magnet wire minimizes leakage current and provides good thermal resistance
- Stable high temp encapsulation material minimizes movement or working of windings under large temperature variations.
- Rare earth magnets
- High power density
- Large through bores

TYPICAL APPLICATIONS

- Auxiliary power generation
- Wind energy
- Onboard power generation for manned and unmanned vehicles

AG MATRIX[™] SERIES OVERVIEW

A permanent magnet alternator is a power generating device that produces a sinusoidal output when a mechanical input to its hub or shaft is applied. This device is constructed very much like a brushless motor with the appropriate selection of insulation materials and winding to match the environment and application. Essentially, a permanent magnet alternator is to a brushless motor what a tachometer is to a brush-type motor except that the alternator's application is power generation instead of rate feedback.

Design Considerations

All diameters listed have finished ground lamination surfaces. They can be complemented with rings and hubs for mounting convenience. If you require a housing that may also include bearings, torquer motor, synchro, potentiometer, or similar components, we can design the entire assembly to meet your mechanical dimensions and performance requirements.

Mounting Considerations

Since torque motors are normally delivered in kit form, you provide the mounting surfaces and bearings. When you design the mechanics of the mount, be sure to observe these rules:

- 1. Eccentricities from the inner member mounting surface should not exceed 0.004 inches for rare earth motor designs.
- 2. The bore of the mounting surface should be perpendicular to the mounting seat within 0.002 inches for rare earth designs.

Electrical Considerations

For each mechanical configuration shown, different winding designs to modify AC output voltage, output power or speed can be supplied by Moog to suit your system requirement. In each case, you have the option of selecting one of the existing designs or specifying a new winding designed to meet your exact requirements.

OPTIONS

- Winding options to adjust the output power and output voltage
- Varying stack lengths from 0.10 to over 30 inches (2.54 to 762 mm)
- Mounting flanges, hubs, mounting holes and connectors may be added as required

The following frame sizes represent only a small sampling of the total range manufactured. Consult factory for additional designs. Refer to our online documentation for product updates.

Note: Additional alternator proudcts available, see GES Alternators at www.moog.com.

AG-5250 SERIES SPECIFICATIONS

MOTOR CHAI	RACTERIST	ICS @ 25° C

Specification	Units	AG-5250 A-1ES	AG-5250 B-1ES	AG-5250 C-1ES	AG-5250 D-1ES	AG-5250 E-1ES	AG-5250 F-1ES
Continuous Rated Power	W	345	529	717	903	1031	1400
Rated Speed Power	rpm	650	650	650	650	650	650
Voltage at Rated Power	V rms	237	242	244	247	247	250
Current at Rated Power	Amps rms	0.84	1.26	1.74	2.11	2.42	3.23
Efficiency at Rated Power	%	78	80	82	84	85	86
Input Torque at Rated Speed	lb.ft (n.m)	5.06 (6.86)	7.39 (10.02)	9.76 (13.24)	12.10 (16.41)	13.80 (18.71)	18.40 (24.95)
Weight	lb (Kg)	5.2 (2.36)	7.2 (3.27)	9.1 (4.13)	10.9 (4.94)	12.7 (5.76)	16.5 (7.48)
OD*	inches (mm)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)
ID	inches (mm)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)

MOTOR CHARACTERISTICS @ 25° C							
Specification	Units	AG-5250 A-2ES	AG-5250 B-2ES	AG-5250 C-2ES	AG-5250 D-2ES	AG-5250 E-2ES	AG-5250 F-2ES
Continuous Rated Power	W	1000	1411	1895	2343	2708	3590
Rated Speed Power	rpm	1500	1500	1500	1500	1500	1500
Voltage	V rms	260	260	238	260	263	259
Current	Amps rms	2.24	3.13	4.29	5.20	5.94	8.01
Efficiency	%	90	90	90	91	90	91
Input Torque at Rated Speed	lb.ft (n.m)	5.44 (7.38)	7.55 (10.204)	10.10 (13.70)	12.40 (16.81)	14.30 (19.39)	18.90 (25.63)
Weight	lb (Kg)	5.2 (2.36)	7.2 (3.247)	9.1 (4.13)	10.9 (4.94)	12.8 (5.80)	16.6 (7.53)
OD*	inches (mm)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)	5.250 (133.35)
ID	inches (mm)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)	2.35 (59.69)

MECHANICAL DIMENSIONS (INCHES)

LENGTH DIMENSIONS

Modular	"A" inches (mm)	"B" inches (mm)
AG-5250-A-1ES	1.4 (35.56)	1.125 (28.575)
AG-5250-A-2ES	1.4 (35.56)	1.125 (28.575)
AG-5250-B-1ES	1.9 (48.26)	1.625 (41.275)
AG-5250-B-2ES	1.9 (48.26)	1.625 (41.275)
AG-5250-C-1ES	2.4 (60.96)	2.125 (53.975)
AG-5250-C-2ES	2.4 (60.96)	2.125 (53.975)
AG-5250-D-1ES	2.9 (73.66)	2.725 (69.215)
AG-5250-D-2ES	2.9 (73.66)	2.725 (69.215)
AG-5250-E-1ES	3.4 (86.36)	3.225 (81.915)
AG-5250-E-2ES	3.4 (86.36)	3.225 (81.915)
AG-5250-F-1ES	4.4 (111.76)	4.225 (107.315)
AG-5250-F-2ES	4.4 (111.76)	4.225 (107.315)

AG-7350 SERIES SPECIFICATIONS

		MU	TUR CHAR	ACTERIST		-			
Specification	Units	AG-7350 A-1ES	AG-7350 B-1ES	AG-7350 C-1ES	AG-7350 D-1ES	AG-7350 E-1ES	AG-7350 F-1ES	AG-7350 G-1ES	AG-7350 H-1ES
Continuous Rated Power	w	868	1304	1727	2177	2603	3027	3319	4181
Rated Speed Power	rpm	600	600	600	600	600	600	600	600
Voltage	V rms	232	229	230	227	231	227	231	227
Current	Amps rms	4.08	3.29	4.33	5.53	6.51	7.69	8.31	10.6
Efficiency	%	85	87	88	89	89	90	90	90
Input Torque at Rated Speed	lb.ft (n.m)	12.40 (16.81)	18.00 (24.41)	23.60 (32.00)	29.40 (39.87)	34.90 (47.32)	40.40 (54.78)	44.3 (60.07)	55.5 (75.26)
Weight	lb (Kg)	10.5 (4.76)	14.5 (6.58)	18.0 (8.17)	22.0 (9.98)	25.5 (11.57)	30.0 (13.61)	33.0 (14.97)	40.0 (18.14)
OD*	inches (mm)	7.350 (186.69)							
ID	inches (mm)	3.350 (85.09)							

		MO	TOR CHAR	ACTERIST	ICS @ 25° (
Specification	Units	AG-7350 A-2ES	AG-7350 B-2ES	AG-7350 C-2ES	AG-7350 D-2ES	AG-7350 E-2ES	AG-7350 F-2ES	AG-7350 G-2ES	AG-7350 H-2ES
Continuous Rated Power	w	1904	2872	3751	4561	5421	6360	7356	8550
Rated Speed Power	rpm	1200	1200	1200	1200	1200	1200	1200	1200
Voltage	V rms	230	230	233	236	238	239	228	229
Current	Amps rms	1.79	7.22	8.95	11.2	13.1	15.3	18.6	21.6
Efficiency	%	91	92	92	92	92	92	92	92
Input Torque at Rated Speed	lb.ft (n.m)	12.50 (16.95)	18.70 (25.36)	23.60 (32.00)	29.50 (40.00)	35.00 (47.46)	41.00 (55.60)	47.4 (64.27)	55.1 (74.72)
Weight	lb (Kg)	10.5 (4.76)	14.5 (6.58)	18.0 (8.17)	22.0 (9.98)	25.5 (11.57)	30.0 (13.61)	33.0 (14.97)	40.0 (18.14)
OD*	inches (mm)	7.350 (186.69)							
ID	inches (mm)	3.350 (85.09)							

MOTOR CHARACTERISTICS @ 25° C

AG-7350 SERIES SPECIFICATIONS

MECHANICAL DIMENSIONS (INCHES)

Modular	"A" Inches	"B" Inches
AG-7350-A-1ES	1.40 (35.56)	1.050 (26.67)
AG-7350-A-2ES	1.40 (35.56)	1.050 (26.67)
AG-7350-B-1ES	1.90 (48.26)	1.550 (39.37)
AG-7350-B-2ES	1.90 (48.26)	1.550 (39.37)
AG-7350-C-1ES	2.40 (60.96)	2.075 (52.705)
AG-7350-C-2ES	2.40 (60.96)	2.075 (52.705)
AG-7350-D-1ES	2.890 (73.406)	2.757 (70.028)
AG-7350-D-2ES	2.890 (73.406)	2.757 (70.028)
AG-7350-E-1ES	3.40 (86.36)	3.075 (78.105)
AG-7350-E-2ES	3.40 (86.36)	3.075 (78.105)
AG-7350-F-1ES	3.90 (99.06)	3.600 (91.44)
AG-7350-F-2ES	3.90 (99.06)	3.600 (91.44)
AG-7350-G-1ES	4.40 (111.76)	4.100 (104.14)
AG-7350-G-2ES	4.40 (111.76)	4.100 (104.14)
AG-7350-H-1ES	5.40 (137.16)	5.125 (130.175)
AG-7350-H-2ES	5.40 (137.16)	5.125 (130.175)

AG-12600 SERIES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C							
Specification	Units	AG-12600 A-1ES	AG-12600 B-1ES	AG-12600 C-1ES	AG-12600 D-1ES	AG-12600 E-1ES	AG-12600 F-1ES
Continuous Rated Power	W	966	2149	3681	4737	5966	7049
Rated Speed Power	rpm	250	250	250	250	250	250
Voltage	V rms	256	265	283	278	282	280
Current	Amps rms	2.18	4.68	7.27	9.82	12.23	14.52
Efficiency	%	79	85	86	87	88	89
Input Torque at Rated Speed	lb.ft (n.m)	35.8 (48.54)	73.0 (99.99)	120.0 (162.72)	154.0 (208.82)	193.0 (261.71)	227.0 (307.81)
Weight	lb (Kg)	21.0 (9.53)	36.0 (16.33)	51.0 (23.13)	65.0 (29.48)	80.0 (36.29)	96.0 (43.55)
OD*	inches (mm)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)
ID	inches (mm)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)

MUTUR CHARACTERISTICS @ 25° C								
Specification	Units	AG-12600 A-2ES	AG-12600 B-2ES	AG-12600 C-2ES	AG-12600 D-2ES	AG-12600 E-2ES	AG-12600 F-2ES	
Continuous Rated Power	W	3874	7998	12281	16388	20941	23986	
Rated Speed Power	rpm	800	800	800	800	800	800	
Voltage	V rms	280	285	301	284	297	277	
Current	Amps rms	7.98	163.17	22.75	33.02	40.31	49.27	
Efficiency	%	90	90	91	91	91	91	
Input Torque at Rated Speed	lb.ft (n.m)	37.7 (51.12)	76.8 (104.14)	118.0 (160.01)	157.0 (212.89)	201.0 (272.56)	230.0 (311.88)	
Weight	lb (Kg)	21.0 (9.53)	36.0 (16.33)	51.0 (23.13)	65.0 (29.48)	80.0 (36.29)	96.0 (43.55)	
OD*	inches (mm)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)	12.60 (320.0)	
ID	inches (mm)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)	8.75 (222.25)	

Modular	"A" Inches	"B" Inches
AG-12600-A-1ES	1.6 (40.64)	1.05 (26.67)
AG-12600-A-2ES	1.6 (40.64)	1.05 (26.67)
AG-12600-B-1ES	2.6 (66.04)	2.075 (52.71)
AG-12600-B-2ES	2.6 (66.04)	2.075 (52.71)
AG-12600-C-1ES	3.6 (91.44)	3.10 (78.74)
AG-12600-C-2ES	3.6 (91.44)	3.10 (78.74)
AG-12600-D-1ES	4.6 (116.84)	4.125 (104.775)
AG-12600-D-2ES	4.6 (116.84)	4.125 (104.775)
AG-12600-E-1ES	5.6 (142.24)	5.15 (130.81)
AG-12600-E-2ES	5.6 (142.24)	5.15 (130.81)
AG-12600-F-1ES	6.6 (167.64)	6.2 (157.48)
AG-12600-F-2ES	6.6 (167.64)	6.2 (157.48)

AG-15275 SERIES SPECIFICATIONS

|--|

Specification	Units	AG-15275 A-1ES	AG-15275 B-1ES	AG-15275 C-1ES	AG-15275 D-1ES	AG-15275 E-1ES	AG-15275 F-1ES	AG-15275 G-1ES	AG-15275 H-1ES
Continuous Rated Power	w	1631	3594	5653	7392	9401	11141	12707	15042
Rated Speed Power	rpm	220	220	220	220	220	220	220	220
Voltage	V rms	248	307	293	289	260	298	263	285
Current	Amps rms	3.8	6.75	11.2	14.7	20.9	21.6	27.8	30.5
Efficiency	%	82	87	82	84	85	85	86	86
Input Torque at Rated Speed	lb.ft (n.m)	65.7 (89.09)	135.0 (183.06)	207.0 (280.96)	269.0 (364.76)	340.0 (461.04)	402.0 (545.11)	458.0 (621.05)	539.0 (730.88)
Weight	lb (Kg)	38.0 (17.24)	65.0 (29.48)	92.0 (41.73)	120.0 (54.43)	150.0 (68.04)	175.0 (79.38)	200.0 (90.72)	230.0 (104.34)
OD*	inches (mm)	15.275 (387.99)							
ID	inches (mm)	10.157 (257.99)							

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	AG-15275 A-2ES	AG-15275 B-2ES	AG-15275 C-2ES	AG-15275 D-2ES	AG-15275 E-2ES	AG-15275 F-2ES	AG-15275 G-2ES	AG-15275 H-2ES
Continuous Rated Power	w	6892	14706	21282	29237	32922	32960	31121	36526
Rated Speed Power	rpm	800	800	800	800	700	600	500	500
Voltage	V rms	267	322	289	291	283	288	281	280
Current	Amps rms	15.1	26.5	4.3	58.0	65.8	66	63.2	75.2
Efficiency	%	90	90	90	90	91	90	90	90
Input Torque at Rated Speed	lb.ft (n.m)	67.4 (91.99)	141.0 (191.20)	205.0 (277.98)	283.0 (383.75)	363.0 (492.23)	423.0 (573.59)	479.0 (649.52)	562.0 (762.07)
Weight	lb (Kg)	38.0 (17.24)	65.0 (29.48)	92.0 (41.73)	120.0 (54.43)	150.0 (68.04)	175.0 (79.38)	200.0 (90.72)	230.0 (104.34)
OD*	inches (mm)	15.275 (387.99)							
ID	inches (mm)	10.157 (257.99)							

AG-15275 SERIES SPECIFICATIONS

MECHANICAL DIMENSIONS (INCHES)

Modular	"A" Inches	"B" Inches
AG-15275-A-1ES	1.95 (49.53)	1.2 (30.48)
AG-15275-A-2ES	1.95 (49.53)	1.2 (30.48)
AG-15275-B-1ES	3.05 (77.47)	2.3 (58.42)
AG-152750-B-2ES	3.05 (77.47)	2.3 (58.42)
AG-15275-C-1ES	4.15 (105.41)	3.45 (87.63)
AG-15275-C-2ES	4.15 (105.41)	3.45 (87.63)
AG-15275-D-1ES	5.25 (133.35)	4.575 (119.21)
AG-15275-D-2ES	5.25 (133.35)	4.575 (119.21)
AG-15275-E-1ES	6.35 (161.29)	5.7 (144.78)
AG-15275-E-2ES	6.35 (161.29)	5.7 (144.78)
AG-15275-F-1ES	7.45 (189.23)	6.825 (173.36)
AG-15275-F-2ES	7.45 (189.23)	6.825 (173.36)
AG-15275-G-1ES	8.55 (217.17)	7.95 (201.93)
AG-15275-G-2ES	8.55 (217.17)	7.95 (201.93)
AG-15275-H-1ES	9.65 (245.11)	9.075 (230.51)
AG-15275-H-2ES	9.65 (245.11)	9.075 (230.51)

LIMITED ROTATION SECTIONAL TORQUE MOTORS

Limited rotation sectional torque motors are unique motion components that can be used to control or move elements that only require limited rotation. These devices provide very linear torque and high acceleration. They are ideal for limited movement applications where space is critical, no room for a full sized round motor.

Since the angle of rotation is limited, these motors require no commutation, which makes the design brushless, regardless of the excitation method used. The brushless design means that there is no brush wear debris to contend with in applications where cleanliness is an issue.

These devices are supplied as a parts-set and are intended to use existing structures as their supporting elements. This concept reduces the total mass of the complete assembly by eliminating redundant support structures and reduces total system cost.

BENEFITS

- Provides a consistent torque over a limited angle
- Saves physical space
- Ripple free operation
- Less friction
- Better heat dissipation
- Winding is on the outside element, namely the stator
- No cogging
- Two leads: simpler electronics
- Excellent form-factor: allows for use in very tight volume
- Integrate feedback devices

TYPICAL APPLICATIONS

- Missiles, precision guided munition and radar applications
- Short and medium range missiles with small diameters
- Small diameter FLIRs
- Scanners

STROKE INFORMATION

Model	Stroke
AS-912-001	± 35.5°
AS-912-002	± 35.5°
AS-913-001	± 33.0°
AS-913-002	± 28.5°

DB SERIES FRAMELESS BRUSHLESS DC TORQUE MOTORS

The DB Series brushless torque motors are used in applications that require high power density and / or quick accelerations. The designs are optimized to minimize input power for maximum efficiency.

Utilizing high energy rare earth magnets and dense slot fills, the DB Series achieves high Km values. This provides the highest performance per volume and minimizes the motor footprint within the system.

The motors are supplied as a direct drive rotor / stator frameless part set that is directly attached to the load. This form of attachment eliminates backlash and increases servo stiffness for an optimized direct drive system.

The DB Series motors consist of a wide range of sizes and performance.

Our engineers design custom solutions. If an existing model does not meet your needs, we will tailor them or provide options for a best value solution to meet your exact requirements.

FEATURES

- Compact
- Peak torques from 21 to over 650,000 oz-in (0.148 to 4590 N.m)
- Double insulated high temp magnet wire minimizes leakage current and provides good thermal resistance
- Stable high temp encapsulation material minimizes movement or working of windings under large temperature variations.
- Rare earth magnets
- High power density
- High torque to inertia ratio
- Low speed with high accuracy
- Large through bores

BENEFITS

- Operate over a wide range of speeds not limited to AC frequency
- Extremely quiet operation with long life capability
- Motor life is not limited to brush or commutator life
- Efficient operation without losses associated with brushes

TYPICAL APPLICATIONS

- Speed and rotation control systems
- Gimbals for FLIR and inertial navigation systems
- Stabilized gun and fire control systems for combat vehicles
- Fire control radars for land and shipboard defense
- Cockpit instrumentation for military and commercial aircraft
- Space and vacuum instruments, actuation systems and momentum wheels

DB MATRIX[™] SERIES OVERVIEW

A brushless DC torque motor is a motor which is electronically commutated and exhibits the linear speed torque characteristic of a conventional DC motor. The performance of the brushless DC motor is dependent on the commutation of current in the motor windings, which is controlled by a separate electronic controller. Most controllers require some type of position feedback for proper operation. Common feedback devices are Hall Effect sensors, resolvers and encoders. Moog offers all three types and provides technical assistance in choosing the correct sensor for your application.

Design Considerations

All diameters listed have finished ground lamination surfaces. They can be complemented with rings and hubs for mounting convenience. If you require a housing that may also include bearings, torquer motor, synchro, potentiometer, or similar components, we can design the entire assembly to meet your mechanical dimensions and performance requirements.

Mounting Considerations

Since torque motors are normally delivered in kit form, you provide the mounting surfaces and bearings. When you design the mechanics of the mount, be sure to observe these rules:

- 1. Eccentricities from the inner member mounting surface should not exceed 0.004 inches for rare earth motor designs.
- 2. The bore of the mounting surface should be perpendicular to the mounting seat within 0.002 inches for rare earth designs.

Electrical Considerations

For each mechanical configuration shown, different winding designs to modify torque, torque sensitivity, DC resistance, can be supplied by Moog to suit your system requirement. In each case, you have the option of selecting one of the existing designs or specifying a new winding designed to meet your exact requirements.

TABLE 1						
Parameter	Symbol	Units	Relationship To Published Parameter			
Electrical Time Constant	τ _E	ms	L _M / R _M			
Mechanical Time Constant	τ _M	ms	$J_{M} \bullet R_{M}$ $K_{E} \bullet K_{T}$			
Power Input, Stalled At Peak Torque (25°C)	P _P	watts	$V_{p} \bullet I_{p}$			
Viscous Damping Coefficients Zero Source Impedance Infinite Source Impedance	F _o F _i	oz-in per rad/s oz-in per rad/s	$K_{T} \bullet K_{E}$ R_{M} Small % of F_{0}			
Motor Friction Torque (Actual)	T _F	oz-in	T _F			
Maximum Power Rate	Р	oz-in / s²	T _P ² / J _M			
Maximum Theoretical Acceleration	∞ ^M		T _P / J _M			
Theoretical No Load Speed	ω _{NL}		V _P / K _E			
1 T is enablished as a maximum value a	nd includes bruch i	friation magnetic d	latant			

 1 T_F is specified as a maximum value and includes brush friction, magnetic detent and test fixture bearing friction which is considered negligible.

 $^2~$ In cases where motor is to be operated at some voltage less than V_p due to power supply limitations the new $\omega_{_{NI}}$ becomes V_A / K_p where V_A = voltage applied.

OPTIONS

- Winding options to adjust torque sensitivity, back EMF, DC resistance for matching a variety of system requirements
- Varying stack lengths from 0.25 to 2.5 inches (6.35 to 63.5 mm)
- Mounting flanges, hubs, mounting holes and connectors may be added as required
- Hall effect sensors for commutation

The following frame sizes represent only a small sampling of the total range manufactured. Consult factory for additional designs. Refer to our online documentation for product updates.

DB-1250-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	1.4
Motor Constant, K_{M}	oz-in / √W	1.11
Number of Poles		8
Number of Phases		3"∆"
Weight	oz (nom)	1
Motor Inertia, J_{M}	oz-in-s²	1.22E-04
Friction Torque, T _F	oz-in	0.35
Electrical Time Constant, $T_{\rm E}$	ms	0.09
Mechanical Time Constant, $T_{\rm M}$	ms	14.10
*Temperature Rise, TPR'	°C/W	29.6
Integral Feedback Device		None

MOTOR WINDING CONSTANTS

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	7
Back EMF, K _e	V per rad/s \pm 10%	0.049
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms \pm 10%	40
Terminal Inductance, L_{M}	mH ± 30%	3.7
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	8
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	0.20

29

DB-1500-G-4 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	53
Motor Constant, $K_{\rm M}$	oz-in / √W	6.27
Number of Poles		8
Number of Phases		3"Y"
Weight	oz (nom)	7
Motor Inertia, J_{M}	oz-in-s ²	4.53E-03
Friction Torque, T _F	oz-in	1
Electrical Time Constant, $T_{\rm E}$	ms	0.47
Mechanical Time Constant, T_{M}	ms	16.31
*Temperature Rise, TPR'	°C / W	9.8
Integral Feedback Device		None

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	11.9
Back EMF, K _e	V per rad/s \pm 10%	0.084
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms ± 10%	3.6
Terminal Inductance, L_{M}	mH ± 30%	1.7
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	16.1
Amps at Peak Torque, I _P	amps	4.46

DB-1840-K-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	243.9
Motor Constant, $K_{\rm M}$	oz-in / √W	11.85
Number of Poles		6
Number of Phases		3"Y"
Weight	oz (nom)	14
Motor Inertia, J_{M}	oz-in-s ²	4.80E-04
Friction Torque, T _F	oz-in	1.8
Electrical Time Constant, $T_{\rm E}$	ms	0.884
Mechanical Time Constant, T_{M}	ms	0.48
*Temperature Rise, TPR'	°C/W	2
Integral Feedback Device		Halls

Specification	Units	Value
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp \pm 10%	7.77
Back EMF, K _e	V per rad/s \pm 10%	0.055
Terminal Resistance, R_{M}	ohms \pm 10%	0.43
Terminal Inductance, L_{M}	mH ± 30%	0.38
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	13.5
Amps at Peak Torque, $I_{\!\scriptscriptstyle P}$	amps	31.4

DB-1890-A-1S SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	45
Motor Constant, K_{M}	oz-in / √W	2.52
Number of Poles		16
Number of Phases		3"Y"
Weight	oz (nom)	1.8
Motor Inertia, J_{M}	oz-in-s ²	9.00E-04
Friction Torque, T _F	oz-in	2.0
Electrical Time Constant, T _e	ms	0.04
Mechanical Time Constant, T_{M}	ms	20.11
*Temperature Rise, TPR'	°C/W	18.5
Integral Feedback Device		No

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	3.90
Back EMF, K _e	V per rad/s \pm 10%	0.028
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms $\pm 10\%$	2.40
Terminal Inductance, L_{M}	mH ± 30%	0.11
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	27.8
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	11.6

DB-2180-A-1S SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	230
Motor Constant, K_{M}	oz-in / √W	13.9
Number of Poles		16
Number of Phases		3"Y"
Weight	oz (nom)	8
Motor Inertia, J_{M}	oz-in-s ²	5.00E-03
Friction Torque, T _F	oz-in	4.0
Electrical Time Constant, T _e	ms	0.17
Mechanical Time Constant, $T_{\rm M}$	ms	3.65
*Temperature Rise, TPR'	°C/W	5.5
Integral Feedback Device		No

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	19.2
Back EMF, K _e	V per rad/s \pm 10%	0.136
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms \pm 10%	1.90
Terminal Inductance, L_{M}	mH ± 30%	0.32
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	22.8
Amps at Peak Torque, $I_{\!P}$	amps	12.0

DB-2480-A-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	7.4
Motor Constant, $K_{\rm M}$	oz-in / √W	2.73
Number of Poles		10
Number of Phases		1"Y"
Weight	oz (nom)	3.3
Motor Inertia, J_{M}	oz-in-s ²	2.90E-04
Friction Torque, T _F	oz-in	0.30
Electrical Time Constant, $T_{\rm e}$	ms	0.27
Mechanical Time Constant, T_{M}	ms	5.52
*Temperature Rise, TPR'	°C/W	14.4
Integral Feedback Device		No

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	49.0
Back EMF, K _e	V per rad/s \pm 10%	0.346
Terminal Resistance, R_{M}	ohms ± 10%	323
Terminal Inductance, L_{M}	mH ± 30%	88
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	48.5
Amps at Peak Torque, $I_{\!\scriptscriptstyle P}$	amps	0.15

DB-3175-A-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	54
Motor Constant, $K_{\rm M}$	oz-in / √W	7.38
Number of Poles		16
Number of Phases		2"Y"
Weight	oz (nom)	12
Motor Inertia, $J_{\rm M}$	oz-in-s ²	8.30E-03
Friction Torque, T _F	oz-in	1.5
Electrical Time Constant, $T_{\rm E}$	ms	0.15
Mechanical Time Constant, T_{M}	ms	21.60
*Temperature Rise, TPR'	°C/W	7.7
Integral Feedback Device		No

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	68.0
Back EMF, K _e	V per rad/s \pm 10%	0.480
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms ± 10%	85.0
Terminal Inductance, L_{M}	mH ± 30%	13
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	68.0
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	0.800

DB-3730-B-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	179
Motor Constant, $K_{\rm M}$	oz-in / √W	14.9
Number of Poles		10
Number of Phases		1
Weight	oz (nom)	11.3
Motor Inertia, ${\rm J}_{\rm M}$	oz-in-s ²	2.60E-02
Friction Torque, T _F	oz-in	4.5
Electrical Time Constant, $T_{\rm e}$	ms	0.33
Mechanical Time Constant, T_{M}	ms	16.67
*Temperature Rise, TPR'	°C/W	5.9
Integral Feedback Device		No

MOTOR WINDING CONSTANTS

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	47.0
Back EMF, K _e	V per rad/s \pm 10%	0.332
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms \pm 10%	10.0
Terminal Inductance, L_{M}	mH ± 30%	3.3
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	38.1
Amps at Peak Torque, I _P	amps	3.81

MECHANICAL DIMENSIONS (INCHES)
DB-4530-A-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	192.7
Motor Constant, $K_{\rm M}$	oz-in / √W	16.14
Number of Poles		20
Number of Phases		2
Weight	oz (nom)	17
Motor Inertia, J_{M}	oz-in-s ²	7.80E-03
Friction Torque, T _F	oz-in	2
Electrical Time Constant, $T_{\rm e}$	ms	0.450
Mechanical Time Constant, T_{M}	ms	4.24
*Temperature Rise, TPR'	°C/W	1.5
Integral Feedback Device		None

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp ± 10%	250
Back EMF, K _e	V per rad/s \pm 10%	1.765
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms \pm 10%	240
Terminal Inductance, L_{M}	mH ± 30%	108
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	185
Amps at Peak Torque, I _P	amps	0.77

DB-12600-A-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	21248
Motor Constant, $K_{\rm M}$	oz-in / √W	973
Number of Poles		32
Number of Phases		3"Y"
Weight	oz (nom)	528
Motor Inertia, J_{M}	oz-in-s ²	7.14
Friction Torque, T _F	oz-in	16
Electrical Time Constant, T_{E}	ms	6
Mechanical Time Constant, T_{M}	ms	1.07
*Temperature Rise, TPR'	°C/W	0.43
Integral Feedback Device		No

MOTOR WINDING CONSTANTS

Specification	Units	Value
**Torque Sensitivity, $K_{\rm T}$	oz-in/amp \pm 10%	2656
Back EMF, K _e	V per rad/s \pm 10%	18.8
Terminal Resistance, $\mathrm{R}_{_{\mathrm{M}}}$	ohms \pm 10%	7.45
Terminal Inductance, L_{M}	mH ± 30%	45
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	60
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	8.0

TD SERIES FRAMELESS BRUSHLESS DC LIMITED ANGLE TORQUE MOTORS

The TD motors are used in applications that require limited angle rotation with a constant torque throughout the excursion angle.

The toroidal motors have the dual advantage of being brushless and providing constant, ripple-free torque sustained through the required angle. Eliminating the slot cogging effect makes toroidal designs desirable in many applications, especially in incremental motion systems and in the field of control instrumentation. In addition, lower rotor inertia motors may be substituted where a high mechanical time constant was incorporated to filter torque ripple.

The motors are supplied as a direct drive rotor / stator frameless part set that is directly attached to the load. This form of attachment eliminates backlash and increases servo stiffness for an optimized direct drive system.

The TD motors consists of a wide range of sizes, outside diameters from 0.6 to over 5 inches (15.24 to 127 mm)

Our engineers design custom solutions. If our existing models don't meet your needs, we will tailor them or provide options for a best value solution to meet your exact requirements.

FEATURES

- Compact
- Peak torques from 1 to over 400 oz-in (0.007 to 2.8 N.m)
- Double insulated high temp magnet wire minimizes leakage current and provides good thermal resistance
- Rare earth magnets
- Large through bores

BENEFITS

- Operate over a wide range of speeds not limited to AC frequency
- Extremely quiet operation with long life capability
- Motor life is not limited to brush or commutator life
- Efficient operation without losses associated with brushes

TYPICAL APPLICATIONS

- Speed and rotation control systems
- Gimbals for FLIR and inertial navigation systems
- Stabilized gun and fire control systems for combat vehicles
- Fire control radars for land and shipboard defense
- Cockpit instrumentation for military and commercial aircraft
- Space and vacuum instruments, actuation systems and momentum wheels

TD-0600-A-15 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	1
Motor Constant, $K_{\rm M}$	oz-in / √W	0.293
Excursion Angle		± 5
Number of Poles		4
Weight	oz (nom)	0.25
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	4.69E-06
Friction Torque, T _F	oz-in	0.06
Electrical Time Constant, T_{E}	ms	0.077
Mechanical Time Constant, T_{M}	ms	5.37

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in/amp	1
Back EMF, K_{E}	V per rad/s	0.0072
Terminal Resistance, R_{M}	ohms (nom)	8.25
Terminal Inductance, L_{M}	mH (nom)	0.634
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	12
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	1.5

TD-1375-D-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	5.5
Motor Constant, $K_{\rm M}$	oz-in / √W	1.06
Excursion Angle	degrees	± 35
Number of Poles		2
Weight	oz (nom)	1.8
Motor Inertia, $J_{\rm M}$	oz-in-s ²	2.10E-04
Friction Torque, $T_{\rm F}$	oz-in	0.06
Electrical Time Constant, T_{E}	ms	2.500
Mechanical Time Constant, T_{M}	ms	23.50

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in/amp	3.3
Back EMF, K _E	V per rad/s	0.026
Terminal Resistance, R_{M}	ohms (nom)	9.6
Terminal Inductance, L_{M}	mH (nom)	24
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	20.2
Amps at Peak Torque, I_{P}	amps	2

TD-1375-F-1C SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	16.5
Motor Constant, $K_{\rm M}$	oz-in / √W	1.37
Excursion Angle	degrees	± 28
Number of Poles		4
Weight	oz (nom)	1.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.80E-04
Friction Torque, $T_{\rm F}$	oz-in	0.08
Electrical Time Constant, T_{E}	ms	4.5
Mechanical Time Constant, T_{M}	ms	13.39

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in/amp	3.36
Back EMF, K _E	V per rad/s	0.024
Terminal Resistance, R_{M}	ohms (nom)	6
Terminal Inductance, L_{M}	mH (nom)	27
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	34
Amps at Peak Torque, I_{P}	amps	5.6

(4) (5) 1 .002 D CONNECTOR WITH 7 FLYING LEADS (4 CONNECTED TO MOTOR) -.420 MAX 1.75^{±.25} .010 MIN. (5).10 MIN. φ .040 MAX. WIDE TO ROOT Ø .562-32 UN-2B ⊕¢.010 @ A @ .020 MAX. X 45° Ø.561 MIN. Ø.5002^{±.0001} (4) Ø1.373^{±.001} (4) Ø.6400 ±.0001 Ø.381 .050 -32 ħ L_0003 E -(2) (4) ⊕ø.005 S A S =D= VIEW A .060 --MIN. .315^{±.010} .065 .020 MAX. WIDE T. .010 MAX. RELIEF -.285 ±.010 32 -.410^{±.002} 4 -E-//0004 B --B-1.0003 A

TD-1500-H-1SC SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	22
Motor Constant, $K_{\rm M}$	oz-in / √W	2.4
Excursion Angle	degrees	± 35
Number of Poles		4
Weight	oz (nom)	2.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.55E-04
Friction Torque, T _F	oz-in	0.35
Electrical Time Constant, T_{E}	ms	0.348
Mechanical Time Constant, T_{M}	ms	3.81

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in/amp	5.75
Back EMF, K _E	V per rad/s	0.0406
Terminal Resistance, R_{M}	ohms (nom)	5.75
Terminal Inductance, L_{M}	mH (nom)	2
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	27
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	4.25

TD-1750-C-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	12
Motor Constant, $K_{\rm M}$	oz-in / √W	1.48
Excursion Angle	degrees	± 31
Number of Poles		4
Weight	oz (nom)	2.5
Motor Inertia, $J_{\rm M}$	oz-in-s ²	6.60E-04
Friction Torque, T _F	oz-in	0.05
Electrical Time Constant, T _E	ms	TBD
Mechanical Time Constant, T_{M}	ms	36.54

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in/amp	4
Back EMF, K _E	V per rad/s	0.028
Terminal Resistance, R_{M}	ohms (nom)	6.2
Terminal Inductance, L_{M}	mH (nom)	TBD
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	19
Amps at Peak Torque, I_{P}	amps	3

TD-1750-E-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	7.5
Motor Constant, $K_{\rm M}$	oz-in / √W	1.35
Excursion Angle	degrees	± 60
Number of Poles		2
Weight	oz (nom)	5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.90E-03
Friction Torque, T _F	oz-in	0.3
Electrical Time Constant, T_{E}	ms	0.529
Mechanical Time Constant, T_{M}	ms	152

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K _T	oz-in/amp	2.5
Back EMF, K _e	V per rad/s	0.017
Terminal Resistance, R_{M}	ohms (nom)	3.4
Terminal Inductance, L_{M}	mH (nom)	1.8
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	9
Amps at Peak Torque, I_{P}	amps	2.5

TD-1900-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	18
Motor Constant, $K_{\rm M}$	oz-in / √W	3.51
Excursion Angle	degrees	± 35
Number of Poles		2
Weight	oz (nom)	10
Motor Inertia, $J_{\rm M}$	oz-in-s ²	3.40E-03
Friction Torque, T _F	oz-in	0.5
Electrical Time Constant, T_{E}	ms	0.625
Mechanical Time Constant, T_{M}	ms	39.37

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K _T	oz-in/amp	6.28
Back EMF, K _e	V per rad/s	0.044
Terminal Resistance, R_{M}	ohms (nom)	3.2
Terminal Inductance, L_{M}	mH (nom)	2
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	10
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	3

TD-1900-B-1C SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	27
Motor Constant, $K_{\rm M}$	oz-in / √W	3.53
Excursion Angle	degrees	± 15
Number of Poles		4
Weight	oz (nom)	5.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	2.00E-03
Friction Torque, T _F	oz-in	0.34
Electrical Time Constant, T_{E}	ms	0.615
Mechanical Time Constant, T_{M}	ms	22.93

Specification	Units	Value
Torque Sensitivity, K _T	oz-in/amp	9
Back EMF, K _e	V per rad/s	0.063
Terminal Resistance, R_{M}	ohms (nom)	6.5
Terminal Inductance, L_{M}	mH (nom)	4
Voltage, Stalled at Peak Torque, V_P	volts	22
Amps at Peak Torque, I_{P}	amps	3

TD-2250-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	18.8
Motor Constant, $K_{\rm M}$	oz-in / √W	4.77
Excursion Angle	degrees	± 7.5
Number of Poles		4
Weight	oz (nom)	7.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	2.26E-03
Friction Torque, T _F	oz-in	0.5
Electrical Time Constant, T_{E}	ms	26.866
Mechanical Time Constant, T_{M}	ms	0.20

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in/amp	33
Back EMF, K_{E}	V per rad/s	0.233
Terminal Resistance, R_{M}	ohms (nom)	0.67
Terminal Inductance, L_{M}	mH (nom)	18
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	24
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	0.648

TD-2300-A-1S SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	10.5
Motor Constant, $K_{\rm M}$	oz-in / √W	3.2
Excursion Angle	degrees	± 23
Number of Poles		4
Weight	oz (nom)	7
Motor Inertia, $J_{\rm M}$	oz-in-s ²	3.80E-03
Friction Torque, T _F	oz-in	0.35
Electrical Time Constant, T_{E}	ms	0.357
Mechanical Time Constant, T_{M}	ms	52.16

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in/amp	12
Back EMF, K _e	V per rad/s	0.085
Terminal Resistance, $\mathrm{R}_{\!\scriptscriptstyle M}$	ohms (nom)	14
Terminal Inductance, $L_{\rm M}$	mH (nom)	5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	14
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	1

TD-2380-A-1S SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	12.5
Motor Constant, $K_{\rm M}$	oz-in / √W	2.04
Excursion Angle	degrees	± 8
Number of Poles		4
Weight	oz (nom)	3.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.78E-03
Friction Torque, T _F	oz-in	0.35
Electrical Time Constant, T_{E}	ms	0.500
Mechanical Time Constant, T_{M}	ms	6.10

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in/amp	5
Back EMF, K _e	V per rad/s	0.35
Terminal Resistance, R_{M}	ohms (nom)	6
Terminal Inductance, L_{M}	mH (nom)	3
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	15
Amps at Peak Torque, I_{P}	amps	2.5

TD-2500-F-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Units	Value
oz-in	18
oz-in / √W	2.35
degrees	± 60
	2
oz (nom)	6.5
oz-in-s ²	2.30E-03
oz-in	0.3
ms	TBD
ms	58.90
	Units oz-in oz-in / √W degrees oz (nom) oz-in-s² oz-in ms ms

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K _T	oz-in/amp	5.9
Back EMF, K _e	V per rad/s	0.0417
Terminal Resistance, R_{M}	ohms (nom)	6.3
Terminal Inductance, L_{M}	mH (nom)	TBD
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	20
Amps at Peak Torque, I_{P}	amps	3.17

TD-3182-A-2S SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	20
Motor Constant, $K_{\rm M}$	oz-in / √W	3.17
Excursion Angle	degrees	± 6
Number of Poles		4
Weight	oz (nom)	8.5
Motor Inertia, $J_{\rm M}$	oz-in-s ²	6.00E-03
Friction Torque, T _F	oz-in	0.2
Electrical Time Constant, T_{E}	ms	0.656
Mechanical Time Constant, T_{M}	ms	84.46

MOTOR WINDING CONSTANTS

Specification	Units	Value
**Torque Sensitivity, K_{T}	oz-in/amp	22
Back EMF, K _e	V per rad/s	0.155
Terminal Resistance, R_{M}	ohms (nom)	48
Terminal Inductance, L_{M}	mH (nom)	31.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	95
Amps at Peak Torque, I_{P}	amps	1.0

TD-3300-J-1SC SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	25
Motor Constant, $K_{\rm M}$	oz-in / √W	6.82
Excursion Angle	degrees	± 22.5
Number of Poles		4
Weight	oz (nom)	11
Motor Inertia, $J_{\rm M}$	oz-in-s ²	1.49E-02
Friction Torque, T _F	oz-in	1
Electrical Time Constant, T_{E}	ms	1.144
Mechanical Time Constant, T_{M}	ms	45.15

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in/amp	22
Back EMF, K _e	V per rad/s	0.156
Terminal Resistance, $\mathrm{R}_{\!\scriptscriptstyle M}$	ohms (nom)	10.4
Terminal Inductance, $L_{\rm M}$	mH (nom)	11.9
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	24
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	1.14

TD-3300-K-1SC SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	65
Motor Constant, $K_{\rm M}$	oz-in / √W	13.34
Excursion Angle	degrees	± 22.5
Number of Poles		4
Weight	oz (nom)	23.2
Motor Inertia, $J_{\rm M}$	oz-in-s ²	3.10E-02
Friction Torque, T _F	oz-in	1
Electrical Time Constant, T_{E}	ms	TBD
Mechanical Time Constant, T_{M}	ms	24.62

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in/amp	26
Back EMF, K _E	V per rad/s	0.184
Terminal Resistance, R_{M}	ohms (nom)	3.8
Terminal Inductance, L_{M}	mH (nom)	TBD
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	12
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	3.16

TD-4094-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	144
Motor Constant, $K_{\rm M}$	oz-in / √W	21.5
Excursion Angle	degrees	± 15
Number of Poles		6
Weight	oz (nom)	24
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	7.60E-02
Friction Torque, T _F	oz-in	0.75
Electrical Time Constant, T_{E}	ms	0.520
Mechanical Time Constant, T_{M}	ms	23.42

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in/amp	48
Back EMF, K _E	V per rad/s	0.338
Terminal Resistance, R_{M}	ohms (nom)	5
Terminal Inductance, L_{M}	mH (nom)	2.6
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	28
Amps at Peak Torque, I_{P}	amps	3

TD-4180-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	336
Motor Constant, $K_{\rm M}$	oz-in / √W	26.5
Excursion Angle	degrees	± 10
Number of Poles		6
Weight	oz (nom)	48
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	6.8E-02
Friction Torque, T _F	oz-in	0.1
Electrical Time Constant, T_{E}	ms	2.000
Mechanical Time Constant, T_{M}	ms	13.75

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K _T	oz-in/amp	73
Back EMF, K _e	V per rad/s	.515
Terminal Resistance, R_{M}	ohms (nom)	7.6
Terminal Inductance, L_{M}	mH (nom)	14
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	14
Amps at Peak Torque, I_{P}	amps	2

TD-4580-B-2S / K059 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	120
Motor Constant, $K_{\rm M}$	oz-in / √W	33.17
Excursion Angle	degrees	± 5
Number of Poles		6
Weight	oz (nom)	30.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	3.20E-02
Friction Torque, T _F	oz-in	6
Electrical Time Constant, T_{E}	ms	1.364
Mechanical Time Constant, T_{M}	ms	4.12

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in/amp	110
Back EMF, K _E	V per rad/s	0.777
Terminal Resistance, R_{M}	ohms (nom)	11
Terminal Inductance, L_{M}	mH (nom)	15
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	17
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	1.55

TD-4882-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	350
Motor Constant, $K_{\rm M}$	oz-in / √W	23.3
Excursion Angle	degrees	± 15
Number of Poles		6
Weight	oz (nom)	41.3
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	8.30E-02
Friction Torque, T _F	oz-in	0.75
Electrical Time Constant, T_{E}	ms	2.300
Mechanical Time Constant, T_{M}	ms	21.69

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in/amp	52
Back EMF, K _E	V per rad/s	0.368
Terminal Resistance, R_{M}	ohms (nom)	5
Terminal Inductance, L_{M}	mH (nom)	11.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	34
Amps at Peak Torque, I_{P}	amps	6.73

TD-4960-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	120
Motor Constant, $K_{\rm M}$	oz-in / √W	35
Excursion Angle	degrees	± 15
Number of Poles		6
Weight	oz (nom)	24
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.19E-01
Friction Torque, T _F	oz-in	0.75
Electrical Time Constant, T_{E}	ms	0.455
Mechanical Time Constant, T_{M}	ms	13.76

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in/amp	82
Back EMF, K _E	V per rad/s	0.58
Terminal Resistance, R_{M}	ohms (nom)	5.5
Terminal Inductance, L_{M}	mH (nom)	2.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	18
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	1.46

BRUSH DC TORQUE MOTORS

Moog designs and manufactures precision motion technology components and subsystems for defense, aerospace and industrial applications.

Our specialty DC brush torque and servomotors can be supplied housed with a variety of shaft configurations but typically as a direct drive rotor / stator part-set that will be directly attached to the load. This form of attachment eliminates backlash and increases servo stiffness for an optimized direct drive system.

DC torque motors are used in applications that require high torque at slow speeds with input power minimized. Our DC servomotors are used in applications that require high speed and positional accuracy. Custom controllers can be supplied on a design-to-specification basis.

FEATURES

- Double insulated high temp magnet wire minimizes leakage current, promotes superior insulation
- Molded brush block assembly features interchangeable brush blocks, optimizing brush position on commutator. Brush contour is done on automatic tooling rather than "run-in" individually.
- Brushes mechanically fastened to brush spring in addition to soldering assures brush alignment during soldering operation plus proper mechanical and electrical bond between brush spring and brush.
- Stable high temp encapsulation material minimizes movement or working of windings under large temperature variations. This high temp material will not crack under temperature variations, and eliminates voids, exposed windings and humidity traps.
- Special magnetic material alloy allows higher torque per unit of volume, higher torque to inertia ratio.
- Plated magnet assemblies resist environmental extremes and require no special handling

- Rare earth magnets typical
- High torque and low speed
- High torque to inertia ratio
- Low speed with high accuracy
- Compact
- Large axial holes through armature for easy application to shafts and bosses

TYPICAL APPLICATIONS

- Speed and rotation control systems
- Gimbals for FLIR and inertial navigation systems
- Stabilized gun and fire control systems for combat vehicles
- Fire control radars for land and shipboard defense
- Cockpit instrumentation for military and commercial aircraft
- Space and vacuum instruments, actuation systems and momentum wheels

BRUSH DC TORQUE MOTORS

Design Considerations

All diameters listed have finished, ground lamination surfaces. They can be complemented with rings and hubs for mounting convenience.

Moog torque motors are normally delivered in kit form.

If you require integral bearings such as, a cartridge assembly containing a torquer motor and synchro, potentiometer or similar component, we can design the entire assembly to your mechanical dimensions and performance requirements.

Mounting Considerations

Since torque motors are normally delivered in kit form, you provide the mounting surfaces and bearings. When you design the mechanics of the mount, be sure to observe these rules:

- 1. Eccentricities from the inner member mounting surface should not exceed 0.002 inches for Alnico designs and 0.004 inches for rare earth motor designs.
- 2. Surfaces in contact with the permanent magnet portion of the motor must be non-magnetic.
- 3. The bore of the mounting surface should be perpendicular to the mounting seat within 0.001 inch for Alnico designs and 0.002 inches for rare earth designs.

Electrical Considerations

For each mechanical configuration shown, different winding designs to modify torque, torque sensitivity, DC resistance, and so on, can be supplied by Moog to suit your special system requirement. In

TABLE 1 Symbol Units Relationship Parameter To Published Parameter Electrical Time Constant ms L_M / R_M τ_{E} Mechanical Time Constant τ_M ms J, • R, K_c • K_t Power Input, Stalled At P_P $V_p \bullet I_p$ watts Peak Torque (25°C) Viscous Damping Coefficients K_τ • K_ε oz-in per rad/s Zero Source Impedance F_o F_i R_M Infinite Source Impedance oz-in per rad/s Small % of F Motor Friction Torque (Actual) T_F T_F oz-in Р oz-in / s² T_P² / J_M Maximum Power Rate Maximum Theoretical Acceleration ж T_p / J_M V_p / K_p Theoretical No Load Speed ω_{NL} ¹ T_e is specified as a maximum value and includes brush friction, magnetic detent

and test fixture bearing friction which is considered negligible.

 $^2~$ In cases where motor is to be operated at some voltage less than V_p due to power supply limitations the new $\omega_{_{NI}}$ becomes V_A / K_p where V_A = voltage applied.

each case, you have the option of selecting one of the existing designs or specifying a new winding designed to meet your special requirements. If your power source (voltage or current) is limited, the mathematical relationships shown in Table 1 will allow you to calculate a particular performance characteristic at the voltage or power capability of your existing power supply.

The following frame sizes represent only a small sampling of the total range manufactured. Consult factory for additional designs. Refer to our online documentation for product updates.

- Brush torque motors range from 1.125 to 10.2 inches 0.D.
- Tachometers range in similar configurations and specifications.
- Torque motors and tachometers are designed to meet the requirements of MIL-E-5400.
- All published parameters are considered nominal (25°C) unless otherwise specified.
- We are currently tooled on some items to house the torque motor on its own bearings and incorporate, if required, a potentiometer and a tachometer.
- Windings can be modified for specific applications.

Brush type DC cube servomotors are also available from Moog.

Conversion Factors

For convenience of calculation or comparison, the following constants are provided for rapid conversion to or from the units Moog uses to express torque motor parameters.

CONVERSION TABLE		
From	То	Multiply By
Lenath		
inches	cm	2.540
feet	cm	30.48
cm	inches	.3937
cm	feet	3.281 x 10 ⁻²
Mass		
OZ	g	28.35
lb	g	453.6
g	OZ	3.527 x 10 ⁻²
lb	OZ	16.0
g	lb	2.205 x 10 ⁻³
0Z	lb	6.250 x 10 ⁻²
Torque		
oz-in	g-cm	72.01
lb-ft	g-cm	1.383 x 10 ⁴
g-cm	oz-in	1.389 x 10 ⁻²
lb-ft	oz-in	192.0
g-cm	lb-ft	7.233 x 10⁻⁵
oz-in	lb-ft	5.208 x 10 ⁻³
Rotation		
rpm	degrees/s 6.0	
rad/s	degrees/s 57.30	
degrees/s	rpm	.1667
rad/s	rpm	9.549
degrees/s	rad/s	1.745 x 10 ⁻²
rpm	rad/s	.1047
Moment Of Inertia	0	400.0
OZ-IN ²	g-cm ²	182.9
lb-ft ²	g-cm ²	4.214 x 10 ⁵
g-cm ²	OZ-IN ²	5.467 x 10 ⁻³
ID-Tt ²	OZ-IN ²	2.304 x 10 ³
g-cm ²	ID-TT ²	2.3/3 x 10 ⁻⁰
oz-in ²	ID-TT ²	4.340 X 10 ⁻⁴
OZ-IN-SeC ²	g-cm ²	7.062 X 10*

D-1125-A-4 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Units	Value
oz-in	6.6
oz-in / √W	0.929
	4
oz (nom)	1.8
oz-in-s ²	1.50E-04
oz-in	0.20
ms	0.246
ms	25.00
°C/W	34
max. avg. to peak (%)	7
	Units oz-in oz-in / √W oz (nom) oz (nom) oz-in-s² oz-in ms ms ms °C / W max. avg. to peak (%)

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	3.45
Back EMF, K _e	V per rad/s	0.024
Terminal Resistance, R_{M}	ohms (nom)	13.8
Terminal Inductance, L_{M}	mH (nom)	3.4
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	26.4
Amps at Peak Torque, I_{P}	amps	1.91

D-1125-B-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	6.6
Motor Constant, K_{M}	oz-in / √W	0.899
Number of Poles		4
Weight	oz (nom)	1.8
Motor Inertia, J_{M}	oz-in-s ²	1.50E-04
Friction Torque, T _F	oz-in	0.20
Electrical Time Constant, $T_{\rm e}$	ms	0.216
Mechanical Time Constant, T_{M}	ms	26.24
Temperature Rise, TPR'	°C/W	33
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	4.10
Back EMF, K _E	V per rad/s	0.029
Terminal Resistance, R_{M}	ohms (nom)	20.8
Terminal Inductance, L_{M}	mH (nom)	4.5
Voltage, Stalled at Peak Torque, V_P	volts	33.3
Amps at Peak Torque, I _P	amps	1.60

D-1125-F-10-T SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_{P}	oz-in	6.6
Motor Constant, K_{M}	oz-in / √W	0.865
Number of Poles		4
Weight	oz (nom)	1.8
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.50E-04
Friction Torque, T _F	oz-in	0.20
Electrical Time Constant, T_{E}	ms	0.246
Mechanical Time Constant, T_{M}	ms	28.41
Temperature Rise, TPR'	°C/W	34
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	3.12
Back EMF, K _E	V per rad/s	0.022
Terminal Resistance, R_{M}	ohms (nom)	13
Terminal Inductance, L_{M}	mH (nom)	3.2
Voltage, Stalled at Peak Torque, $V_{\rm P}$	volts	27.6
Amps at Peak Torque, I _P	amps	2.12

D-1125-N-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	6.6
Motor Constant, $K_{\rm M}$	oz-in / √W	0.899
Number of Poles		4
Weight	oz (nom)	1.8
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s²	1.50E-04
Friction Torque, T _F	oz-in	0.20
Electrical Time Constant, T_{E}	ms	0.216
Mechanical Time Constant, T_{M}	ms	26.24
Temperature Rise, TPR'	°C/W	33
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	4.10
Back EMF, K _e	V per rad/s	0.029
Terminal Resistance, R_{M}	ohms (nom)	20.8
Terminal Inductance, L_{M}	mH (nom)	4.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	33.3
Amps at Peak Torque, ${\sf I}_{\!\scriptscriptstyle P}$	amps	1.60

D-1125-P-10 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	6.6
Motor Constant, $K_{\rm M}$	oz-in / √W	0.87
Number of Poles		4
Weight	oz (nom)	1.8
Motor Inertia, $J_{\rm M}$	oz-in-s ²	1.50E-04
Friction Torque, T _F	oz-in	0.20
Electrical Time Constant, T_{E}	ms	0.246
Mechanical Time Constant, T_{M}	ms	28.4
Temperature Rise, TPR'	°C / W	34
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	3.12
Back EMF, K _e	V per rad/s	0.022
Terminal Resistance, R_{M}	ohms (nom)	13
Terminal Inductance, L_{M}	mH (nom)	3.2
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	27.6
Amps at Peak Torque, $I_{\rm P}$	amps	2.12

D-1125-P-7 / K044 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	6.6
Motor Constant, $K_{\rm M}$	oz-in / √W	0.851
Number of Poles		4
Weight	oz (nom)	1.8
Motor Inertia, J_{M}	oz-in-s ²	1.50E-04
Friction Torque, T _F	oz-in	0.20
Electrical Time Constant, T_{E}	ms	0.231
Mechanical Time Constant, ${\rm T}_{\rm M}$	ms	29.26
Temperature Rise, TPR'	°C/W	34
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	4.95
Back EMF, K _e	V per rad/s	0.035
Terminal Resistance, $\mathrm{R}_{\!\scriptscriptstyle M}$	ohms (nom)	33.8
Terminal Inductance, L_{M}	mH (nom)	7.8
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	45.0
Amps at Peak Torque, $I_{\rm P}$	amps	1.33

D-1375-F-2ANS SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	43
Motor Constant, $K_{\rm M}$	oz-in / √W	2.70
Number of Poles		8
Weight	oz (nom)	2.4
Motor Inertia, $J_{\rm M}$	oz-in-s ²	5.35E-04
Friction Torque, T _F	oz-in	0.88
Electrical Time Constant, T_{E}	ms	0.172
Mechanical Time Constant, T_{M}	ms	10.24
Temperature Rise, TPR'	°C / W	17
Ripple Torque, T _R	max. avg. to peak (%)	6

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	5.05
Back EMF, K _e	V per rad/s	0.036
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms (nom)	3.48
Terminal Inductance, L_{M}	mH (nom)	0.60
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	30.0
Amps at Peak Torque, I_P	amps	8.62

D-1500-C-3 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	15
Motor Constant, $K_{\rm M}$	oz-in / √W	1.78
Number of Poles		6
Weight	oz (nom)	2.4
Motor Inertia, $J_{\rm M}$	oz-in-s²	5.50E-04
Friction Torque, T _F	oz-in	0.50
Electrical Time Constant, T_{E}	ms	0.368
Mechanical Time Constant, T_{M}	ms	24.36
Temperature Rise, TPR'	°C / W	19
Ripple Torque, T _R	max. avg. to peak (%)	7

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	5.50
Back EMF, K _E	V per rad/s	0.039
Terminal Resistance, R_{M}	ohms (nom)	9.5
Terminal Inductance, L_{M}	mH (nom)	3.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	25.9
Amps at Peak Torque, I _P	amps	2.73

D-1500-E-6 / K012 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	15
Motor Constant, $K_{\rm M}$	oz-in / √W	2.01
Number of Poles		6
Weight	oz (nom)	2.4
Motor Inertia, $J_{\rm M}$	oz-in-s²	5.50E-04
Friction Torque, T _F	oz-in	0.50
Electrical Time Constant, T_{E}	ms	0.304
Mechanical Time Constant, T_{M}	ms	19.38
Temperature Rise, TPR'	°C/W	19
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	6.80
Back EMF, K _e	V per rad/s	0.048
Terminal Resistance, $R_{\mbox{\tiny M}}$	ohms (nom)	11.5
Terminal Inductance, L_{M}	mH (nom)	3.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	25.4
Amps at Peak Torque, I _P	amps	2.21

D-1500-Y-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	18.2
Motor Constant, $K_{\rm M}$	oz-in / √W	3.0
Number of Poles		6
Weight	oz (nom)	6.4
Motor Inertia, $J_{\rm M}$	oz-in-s²	0.0014
Friction Torque, T _F	oz-in	0.95
Electrical Time Constant, T_{E}	ms	0.45
Mechanical Time Constant, T_{M}	ms	22.0
Temperature Rise, TPR'	°C/W	12
Ripple Torque, T _R	max. avg. to peak (%)	10

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	13.8
Back EMF, K _e	V per rad/s	0.98
Terminal Resistance, R_{M}	ohms (nom)	20.69
Terminal Inductance, L_{M}	mH (nom)	8.15
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	28.0
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	1.3

D-1500-Z-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	18
Motor Constant, $K_{\rm M}$	oz-in / √W	3.02
Number of Poles		6
Weight	oz (nom)	6.4
Motor Inertia, $J_{\rm M}$	oz-in-s ²	1.40E-03
Friction Torque, T _F	oz-in	0.95
Electrical Time Constant, T_{E}	ms	0.451
Mechanical Time Constant, T_{M}	ms	21.72
Temperature Rise, TPR'	°C / W	12
Ripple Torque, T _R	max. avg. to peak (%)	10

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	14
Back EMF, K _e	V per rad/s	0.099
Terminal Resistance, R_{M}	ohms (nom)	21.5
Terminal Inductance, L_{M}	mH (nom)	9.7
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	28
Amps at Peak Torque, I_P	amps	1.30

D-1938-R-1AN SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	12.9
Motor Constant, $\mathrm{K}_{\!\scriptscriptstyle M}$	oz-in / √W	2.8
Number of Poles		6
Weight	oz (nom)	2.80
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	0.0008
Friction Torque, T _F	oz-in	0.65
Electrical Time Constant, T_{E}	ms	0.31
Mechanical Time Constant, T_{M}	ms	14.4
Temperature Rise, TPR'	°C / W	19

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	15.9
Back EMF, K _E	V per rad/s	0.112
Terminal Resistance, R_{M}	ohms (nom)	32.8
Terminal Inductance, L_{M}	mH (nom)	10
Voltage, Stalled at Peak Torque, $V_{\scriptscriptstyle P}$	volts	26.0
Amps at Peak Torque, I_P	amps	0.807

D-2000-D-1NS SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	108
Motor Constant, $K_{\rm M}$	oz-in / √W	8.06
Number of Poles		8
Weight	oz (nom)	6.7
Motor Inertia, $J_{\rm M}$	oz-in-s ²	3.25E-03
Friction Torque, T _F	oz-in	6.0
Electrical Time Constant, T_{E}	ms	0.032
Mechanical Time Constant, T_{M}	ms	7.08
Temperature Rise, TPR'	°C/W	10

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\!\scriptscriptstyle T}$	oz-in / amp	18.0
Back EMF, K _e	V per rad/s	0.127
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms (nom)	4.99
Terminal Inductance, L_{M}	mH (nom)	1.6
Voltage, Stalled at Peak Torque, $V_{\scriptscriptstyle P}$	volts	29.9
Amps at Peak Torque, I_{P}	amps	6.00

D-2780-B-1AEN SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	14
Motor Constant, $K_{\rm M}$	oz-in / √W	4.05
Number of Poles		10
Weight	oz (nom)	4
Motor Inertia, $J_{\rm M}$	oz-in-s²	5.00E-03
Friction Torque, T _F	oz-in	1.2
Electrical Time Constant, T_{E}	ms	0.123
Mechanical Time Constant, T_{M}	ms	43.12
Temperature Rise, TPR'	°C / W	5.7
Ripple Torque, T _R	max. avg. to peak (%)	6

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	30.6
Back EMF, K _e	V per rad/s	0.216
Terminal Resistance, R_{M}	ohms (nom)	57
Terminal Inductance, L_{M}	mH (nom)	7
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	26
Amps at Peak Torque, $I_{\!\scriptscriptstyle P}$	amps	0.46

D-2813-G-1HT SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	95
Motor Constant, $K_{\rm M}$	oz-in / √W	15.3
Number of Poles		8
Weight	oz (nom)	21
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.40E-03
Friction Torque, T _F	oz-in	2.5
Electrical Time Constant, T_{E}	ms	0.575
Mechanical Time Constant, T_{M}	ms	8.82
Temperature Rise, TPR'	°C/W	7
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	43.3
Back EMF, K _e	V per rad/s	0.306
Terminal Resistance, R_{M}	ohms (nom)	8
Terminal Inductance, L_{M}	mH (nom)	4.6
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	17.6
Amps at Peak Torque, I_P	amps	2.2

D-2910-B-1ENS SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	165
Motor Constant, $K_{\rm M}$	oz-in / √W	10.2
Number of Poles		10
Weight	oz (nom)	9.5
Motor Inertia, $J_{\rm M}$	oz-in-s ²	1.25E-02
Friction Torque, T _F	oz-in	3
Electrical Time Constant, T_{E}	ms	0.319
Mechanical Time Constant, T_{M}	ms	16.84
Temperature Rise, TPR'	°C / W	7.5
Ripple Torque, T _R	max. avg. to peak (%)	7

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	16.5
Back EMF, K _E	V per rad/s	0.117
Terminal Resistance, R_{M}	ohms (nom)	2.6
Terminal Inductance, L_{M}	mH (nom)	0.83
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	26
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	10

D-2910-G-1ENS SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	59
Motor Constant, $K_{\rm M}$	oz-in / √W	9.66
Number of Poles		10
Weight	oz (nom)	9.5
Motor Inertia, $J_{\rm M}$	oz-in-s ²	1.25E-02
Friction Torque, T _F	oz-in	1.2
Electrical Time Constant, T_{E}	ms	0.333
Mechanical Time Constant, T_{M}	ms	18.92
Temperature Rise, TPR'	°C / W	7.5
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	41
Back EMF, K _e	V per rad/s	0.29
Terminal Resistance, R_{M}	ohms (nom)	18
Terminal Inductance, L_{M}	mH (nom)	6
Voltage, Stalled at Peak Torque, V_P	volts	26.1
Amps at Peak Torque, I_P	amps	1.45

D-3000-F-1T SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	93
Motor Constant, $K_{\rm M}$	oz-in / √W	12.2
Number of Poles		10
Weight	oz (nom)	9.7
Motor Inertia, $J_{\rm M}$	oz-in-s ²	1.60E-02
Friction Torque, T _F	oz-in	2.5
Electrical Time Constant, T_{E}	ms	0.615
Mechanical Time Constant, T_{M}	ms	15.32
Temperature Rise, TPR'	°C / W	6.5
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	62
Back EMF, K _e	V per rad/s	0.438
Terminal Resistance, $R_{\!\scriptscriptstyle M}$	ohms (nom)	26
Terminal Inductance, L_{M}	mH (nom)	16
Voltage, Stalled at Peak Torque, V_P	volts	39
Amps at Peak Torque, I_P	amps	1.5

D-3000-F-3T SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	95
Motor Constant, $K_{\rm M}$	oz-in / √W	12.2
Number of Poles		10
Weight	oz (nom)	9.7
Motor Inertia, J_{M}	oz-in-s²	1.60E-02
Friction Torque, T _F	oz-in	2.5
Electrical Time Constant, T_{E}	ms	0.622
Mechanical Time Constant, T_{M}	ms	15.34
Temperature Rise, TPR'	°C / W	6.5
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	28
Back EMF, K _E	V per rad/s	0.198
Terminal Resistance, R_{M}	ohms (nom)	5.3
Terminal Inductance, L_{M}	mH (nom)	3.3
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	18
Amps at Peak Torque, $I_{\mbox{\tiny P}}$	amps	3.40

D-3029-A-2EN SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	37
Motor Constant, $K_{\rm M}$	oz-in / √W	7.85
Number of Poles		10
Weight	oz (nom)	6.5
Motor Inertia, $J_{\rm M}$	oz-in-s ²	1.24E-02
Friction Torque, T _F	oz-in	1
Electrical Time Constant, T_{E}	ms	0.50
Mechanical Time Constant, T_{M}	ms	28.46
Temperature Rise, TPR'	°C / W	8.0
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	43
Back EMF, K _e	V per rad/s	0.304
Terminal Resistance, R_{M}	ohms (nom)	30
Terminal Inductance, L_{M}	mH (nom)	15
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	26
Amps at Peak Torque, ${\sf I}_{\!\scriptscriptstyle P}$	amps	0.87

D-3180-C-2A SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	480
Motor Constant, $K_{\rm M}$	oz-in / √W	29.8
Number of Poles		10
Weight	oz (nom)	36
Motor Inertia, $J_{\rm M}$	oz-in-s ²	3.50E-02
Friction Torque, T _F	oz-in	10
Electrical Time Constant, T_{E}	ms	0.923
Mechanical Time Constant, T_{M}	ms	5.59
Temperature Rise, TPR'	°C / W	5
Ripple Torque, T _R	max. avg. to peak (%)	7

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	48
Back EMF, K _e	V per rad/s	0.339
Terminal Resistance, R_{M}	ohms (nom)	2.60
Terminal Inductance, L_{M}	mH (nom)	2.4
Voltage, Stalled at Peak Torque, V_P	volts	26
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	10

D-3180-C-2AE SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	445
Motor Constant, $K_{\rm M}$	oz-in / √W	27.6
Number of Poles		10
Weight	oz (nom)	36
Motor Inertia, $J_{\rm M}$	oz-in-s ²	3.50E-02
Friction Torque, T _F	oz-in	10
Electrical Time Constant, T_{E}	ms	0.769
Mechanical Time Constant, T_{M}	ms	6.51
Temperature Rise, TPR'	°C/W	5
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	44.5
Back EMF, K _E	V per rad/s	0.314
Terminal Resistance, R_{M}	ohms (nom)	2.60
Terminal Inductance, L_{M}	mH (nom)	2
Voltage, Stalled at Peak Torque, $V_{\scriptscriptstyle P}$	volts	24
Amps at Peak Torque, I _P	amps	9.2

D-3180-G-2AE SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	400
Motor Constant, K_{M}	oz-in / √W	27.6
Number of Poles		10
Weight	oz (nom)	36
Motor Inertia, J _M	oz-in-s ²	0.035
Friction Torque, T _F	oz-in	10
Electrical Time Constant, $T_{\rm E}$	ms	0.769
Mechanical Time Constant, T_{M}	ms	6.51
Temperature Rise, TPR'	°C / W	5
Ripple Torque, T _R	max. avg. to peak (%)	10

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	48
Back EMF, K _E	V per rad/s	0.339
Terminal Resistance, R_{M}	ohms (nom)	2.60
Terminal Inductance, L_{M}	mH (nom)	3.2
Voltage, Stalled at Peak Torque, V_P	volts	26.0
Amps at Peak Torque, I_P	amps	9.23

D-3180-P-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	5.07
Motor Constant, K_{M}	oz-in / √W	0.286
Number of Poles		10
Weight	oz (nom)	3.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	3.88x10 ⁻⁴
Friction Torque, T _F	oz-in	0.10
Electrical Time Constant, T_{E}	ms	1.49
Mechanical Time Constant, T_{M}	ms	3.50
Temperature Rise, TPR'	°C/W	4.3
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	0.811
Back EMF, K _E	V per rad/s	1.10
Terminal Resistance, R_{M}	ohms (nom)	8.03
Terminal Inductance, L_{M}	mH (nom)	12
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	50.2
Amps at Peak Torque, I _P	amps	6.25

D-3375-A-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	33
Motor Constant, K_{M}	oz-in / √W	9.03
Number of Poles		12
Weight	oz (nom)	8.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.60E-02
Friction Torque, T _F	oz-in	2
Electrical Time Constant, T_{E}	ms	0.243
Mechanical Time Constant, T_{M}	ms	27.72
Temperature Rise, TPR'	°C / W	6.2
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	41
Back EMF, K _E	V per rad/s	0.290
Terminal Resistance, R_{M}	ohms (nom)	20.6
Terminal Inductance, L_{M}	mH (nom)	5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	16.5
Amps at Peak Torque, I _P	amps	0.80

D-3375-A-2 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	58
Motor Constant, $K_{\rm M}$	oz-in / √W	10
Number of Poles		12
Weight	oz (nom)	8.5
Motor Inertia, $J_{\mbox{\tiny M}}$	oz-in-s ²	1.63E-02
Friction Torque, T _F	oz-in	2
Electrical Time Constant, T_{E}	ms	0.243
Mechanical Time Constant, T_{M}	ms	22.46
Temperature Rise, TPR'	°C/W	6.2
Ripple Torque, T _R	max. avg. to peak (%)	7

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	46
Back EMF, K _E	V per rad/s	0.325
Terminal Resistance, R_{M}	ohms (nom)	20.6
Terminal Inductance, L_{M}	mH (nom)	5
Voltage, Stalled at Peak Torque, V_P	volts	26
Amps at Peak Torque, I _P	amps	1.26

D-4500-B-1AS SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	305
Motor Constant, $K_{\rm M}$	oz-in / √W	50
Number of Poles		20
Weight	oz (nom)	26
Motor Inertia, $J_{\rm M}$	oz-in-s ²	8.50E-02
Friction Torque, T _F	oz-in	5
Electrical Time Constant, T_{E}	ms	0.353
Mechanical Time Constant, T_{M}	ms	4.83
Temperature Rise, TPR'	°C / W	2.4
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	92
Back EMF, K _E	V per rad/s	0.650
Terminal Resistance, R_{M}	ohms (nom)	3.4
Terminal Inductance, L_{M}	mH (nom)	1.2
Voltage, Stalled at Peak Torque, V_{P}	volts	11.2
Amps at Peak Torque, I _P	amps	3.31

D-4610-B-1AS SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	260.6
Motor Constant, $K_{\rm M}$	oz-in / √W	21.02
Number of Poles		16
Weight	oz (nom)	13
Motor Inertia, J_{M}	oz-in-s ²	5.958E+00
Friction Torque, T _F	oz-in	8.00
Electrical Time Constant, T_{E}	ms	0.326
Mechanical Time Constant, T_{M}	ms	19.09
Temperature Rise, TPR'	°C/W	4.73
Ripple Torque, T _R	max. avg. to peak (%)	7

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	63.411
Back EMF, K _E	V per rad/s	0.448
Terminal Resistance, $\mathrm{R}_{\!\scriptscriptstyle M}$	ohms (nom)	9.10
Terminal Inductance, L_{M}	mH (nom)	2.96
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	37.4
Amps at Peak Torque, I_P	amps	260.619

D-5125-C-3 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	160
Motor Constant, $K_{\rm M}$	oz-in / √W	22.1
Number of Poles		16
Weight	oz (nom)	19
Motor Inertia, $J_{\rm M}$	oz-in-s²	9.80E-02
Friction Torque, T _F	oz-in	5
Electrical Time Constant, T_{E}	ms	0.447
Mechanical Time Constant, T_{M}	ms	28.31
Temperature Rise, TPR'	°C / W	4.5
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	48
Back EMF, K _E	V per rad/s	0.339
Terminal Resistance, $R_{\rm M}$	ohms (nom)	4.70
Terminal Inductance, L_{M}	mH (nom)	2.1
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	15.7
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	3.33

D-5600-A-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	15
Motor Constant, K_{M}	oz-in / √W	0.731
Number of Poles		14
Weight	oz (nom)	9.0
Motor Inertia, J _M	oz-in-s²	4.40x10 ⁻³
Friction Torque, T _F	oz-in	0.50
Electrical Time Constant, T_{E}	ms	1.6
Mechanical Time Constant, T_{M}	ms	6.1
Temperature Rise, TPR'	°C / W	1.2
Ripple Torque, T _R	max. avg. to peak (%)	6

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	1.15
Back EMF, K _E	V per rad/s	1.56
Terminal Resistance, R_{M}	ohms (nom)	2.49
Terminal Inductance, L_{M}	mH (nom)	4.1
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	32.4
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	13.0

D-7200-A-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T_P	oz-in	27.6
Motor Constant, K_{M}	oz-in / √W	1.10
Number of Poles		20
Weight	oz (nom)	12
Motor Inertia, J_{M}	oz-in-s ²	1.18x10 ⁻²
Friction Torque, T _F	oz-in	0.35
Electrical Time Constant, T_{E}	ms	2.1
Mechanical Time Constant, T_{M}	ms	7.19
Temperature Rise, TPR'	°C/W	1.15
Ripple Torque, T _R	max. avg. to peak (%)	4

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	2.65
Back EMF, K _E	V per rad/s	3.59
Terminal Resistance, R_{M}	ohms (nom)	5.80
Terminal Inductance, L_{M}	mH (nom)	12
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	60.3
Amps at Peak Torque, I_{P}	amps	10.4

D-7200-B-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	42.3
Motor Constant, $K_{\rm M}$	oz-in / √W	1.73
Number of Poles		20
Weight	oz (nom)	24
Motor Inertia, $J_{\rm M}$	oz-in-s ²	2.33x10 ⁻²
Friction Torque, T _F	oz-in	0.60
Electrical Time Constant, T_{E}	ms	2.5
Mechanical Time Constant, T_{M}	ms	5.76
Temperature Rise, TPR'	°C/W	0.78
Ripple Torque, T _R	max. avg. to peak (%)	4

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	3.18
Back EMF, K _E	V per rad/s	4.31
Terminal Resistance, R_{M}	ohms (nom)	3.39
Terminal Inductance, L_{M}	mH (nom)	8.6
Voltage, Stalled at Peak Torque, $V_{\scriptscriptstyle P}$	volts	45.0
Amps at Peak Torque, I_P	amps	13.3

D-7200-C-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	43.3
Motor Constant, K_{M}	oz-in / √W	1.70
Number of Poles		20
Weight	oz (nom)	22
Motor Inertia, J _M	oz-in-s ²	2.27x10 ⁻²
Friction Torque, T _F	oz-in	0.60
Electrical Time Constant, T_{E}	ms	2.2
Mechanical Time Constant, T_{M}	ms	5.81
Temperature Rise, TPR'	°C / W	0.78
Ripple Torque, T _R	max. avg. to peak (%)	4

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	1.90
Back EMF, K _E	V per rad/s	2.57
Terminal Resistance, R_{M}	ohms (nom)	1.25
Terminal Inductance, L_{M}	mH (nom)	2.8
Voltage, Stalled at Peak Torque, $V_{\scriptscriptstyle P}$	volts	28.5
Amps at Peak Torque, I_P	amps	22.8

94

D-8630-C-1 SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	160
Motor Constant, $K_{\rm M}$	oz-in / √W	22.1
Number of Poles		16
Weight	oz (nom)	37
Motor Inertia, J_{M}	oz-in-s²	1.40E-02
Friction Torque, T _F	oz-in	8
Electrical Time Constant, T_{E}	ms	0.532
Mechanical Time Constant, T_{M}	ms	40.4
Temperature Rise, TPR'	°C / W	3
Ripple Torque, T _R	max. avg. to peak (%)	5

MOTOR WINDING CONSTANTS

Specification	Units	Value
Torque Sensitivity, K_{T}	oz-in / amp	48
Back EMF, K _E	V per rad/s	0.339
Terminal Resistance, $R_{\rm M}$	ohms (nom)	4.70
Terminal Inductance, L_{M}	mH (nom)	2.5
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	15.7
Amps at Peak Torque, $I_{\rm P}$	amps	3.34

D-9000-A-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	46
Motor Constant, $K_{\rm M}$	oz-in / √W	1.65
Number of Poles		24
Weight	oz (nom)	20
Motor Inertia, $J_{\rm M}$	oz-in-s ²	2.80x10 ⁻²
Friction Torque, T _F	oz-in	0.42
Electrical Time Constant, T_{E}	ms	2.9
Mechanical Time Constant, T_{M}	ms	7.17
Temperature Rise, TPR'	°C / W	0.89
Ripple Torque, T _R	max. avg. to peak (%)	4

Specification	Units	Value
Torque Sensitivity, K _T	oz-in / amp	3.71
Back EMF, K _e	V per rad/s	5.03
Terminal Resistance, R_{M}	ohms (nom)	4.78
Terminal Inductance, L_{M}	mH (nom)	14
Voltage, Stalled at Peak Torque, $V_{\mbox{\tiny P}}$	volts	59.3
Amps at Peak Torque, ${\rm I}_{\rm P}$	amps	12.4

D-9000-B-1ES SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value
Peak Torque, T _P	oz-in	60
Motor Constant, K_{M}	oz-in / √W	2.46
Number of Poles		24
Weight	oz (nom)	31
Motor Inertia, $J_{\rm M}$	oz-in-s ²	4.10x10 ⁻²
Friction Torque, T _F	oz-in	0.83
Electrical Time Constant, T_{E}	ms	3.6
Mechanical Time Constant, T_{M}	ms	5.00
Temperature Rise, TPR'	°C/W	0.68
Ripple Torque, T _R	max. avg. to peak (%)	4

Specification	Units	Value		
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	6.22		
Back EMF, K _E	V per rad/s	8.43		
Terminal Resistance, R_{M}	ohms (nom)	6.40		
Terminal Inductance, L_{M}	mH (nom)	23		
Voltage, Stalled at Peak Torque, $V_{\scriptscriptstyle P}$	volts	61.8		
Amps at Peak Torque, I _P	amps	9.65		

D-10020-C-1ANS SPECIFICATIONS

MOTOR CHARACTERISTICS @ 25° C

Specification	Units	Value		
Peak Torque, T _P	oz-in	2222.3		
Motor Constant, K_{M}	oz-in / √W	98.31		
Number of Poles		32		
Weight	oz (nom)	7.0		
Motor Inertia, J _M	oz-in-s ²	1.335E+00		
Friction Torque, T _F	oz-in	50.00		
Electrical Time Constant, T _e	ms	0.443		
Mechanical Time Constant, T_{M}	ms	19.561		
Temperature Rise, TPR'	°C / W	1.96		
Ripple Torque, T _R	max. avg. to peak (%)	7		

Specification	Units	Value
Torque Sensitivity, $K_{\rm T}$	oz-in / amp	156.5
Back EMF, K _E	V per rad/s	1.105
Terminal Resistance, $R_{\mbox{\tiny M}}$	ohms (nom)	2.71
Terminal Inductance, L_{M}	mH (nom)	1.200
Voltage, Stalled at Peak Torque, $V_{\scriptscriptstyle P}$	volts	38.5
Amps at Peak Torque, I _P	amps	14.20

DC CUBE TORQUE MOTORS 21, 22, 23 AND SERIES

Moog's family of miniature permanent magnet DC cube torque motors is available in .075 and 1 inch frame sizes. These are rapid response motors at all operating speeds because of their high torque-to-inertia ratio and low self-inductance. Torque increases directly with input current for high linearity.

Cube motors are often used in applications where high torque is required, but the available space is limited. Cube motors lend themselves to easier mounting than cylindrical motors in many applications and are easier to lock into an envelope.

Moog offers a choice of Alnico or Samarium Cobalt magnet materials to satisfy most any requirement. These rare earth magnets produce a higher magnetic energy per unit volume than most commercially available permanent magnets. Alnico magnets provide enhanced temperature stability while Samarium Cobalt magnets offer high energy with good, stable performance.

We are tooled for hundreds of designs with different windings, end caps and other options including gearheads, brakes, resolvers, encoders and potentiometers. Most designs can easily be adapted to meet different requirements. We can also provide custom engineering services.

FEATURES

- 4 pole 13 bar motors 2 brushes standard and 4 brushes available
- Stainless steel shafts for durable, rugged wear
- Meets MIL-SPEC 810
- Standard nickel plated housing resists corrosion in harsh environments
- Peak torques from 1.0 to 20 oz-in
- Optional gearheads, brakes, resolvers, encoders and potentiometers available
- Available in 0.75 and $1 \mbox{ inch frame sizes}$
- Silver alloy brushes
- Speeds up to (7500) rpm
- Variety of windings available
- Gold plated terminals
- Gold alloy commutator
- Shaft can be modified with front and rear extensions, integrated gear or a pinio

BENEFITS

- High torque-to-inertia ratio in a small package
- Rapid response at all speeds
- Cartridge brush is easily field-replaceable
- Skewed rotors provide minimum cogging torque
- Gold-clad commutator for long life
- Rare earth magnets provide higher performance than standard permanent magnets
- Cubical shape provides weight and space savings and easy mounting
- Torque increases directly with input current for high linearity as a direct servo drive
- Low self inductance

CUBE MOTOR PARAMETERS

PART NUMBERING SYSTEM GUIDE

– AA – NN / ANNN[] NNN A NN HOUSING TYPE HOUSING CODE (3 Numbers) MODIFICATION NUMBER (Either Location) Sequentially DESIGN SÉRIES SHAFT P = Paladin black "D" + 3 Numbers assigned (2 Numbers) (2 Letters) S = Samarium Cobalt magnets ELECTRICAL OPTIONS Each modification number (slash by factory C = Connector (2 Numbers) number) has a separate outline FRAME SIZE Unique to design series modification sheet 21 1 inch square cube motor 22 1 inch square short version of series 21 23 1 inch square long version of series 21 **EXAMPLES OF TYPICAL CUBE MOTORS** 24 .75 inch square cube motor TERMINATIONS TYPE 1.21 Cube Series (1 Letter) • 1.02 in x 1.02 in x 1.069 in max 1.355 in x 1.355 in x 1.02 in max - cartridge screw type A Solder eyelet terminals (pin type terminals, 2 leaf springs) Peak Torques: 7.6 oz-in Alnico magnet B Lead out the rear 15.0 oz-in Samarium Cobalt magnet С (Not used) D Cover can and unshielded leads (radial exit) E (Not used) 2.22 Cube Series (Not used) 1.02 in x 1.02 in x 0.812 in max G (Not used) • Peak Torques: 3.6 oz-in Alnico magnet H (Not used) 7.0 oz-in Samarium Cobalt magnet (Not used) Leads out the side 1 K Turret type terminals 3.23 Cube Series Screw terminals #4-40, side exit with cartridge brushes (4) • 1.02 in x 1.02 in x 1.343 in max M Screw terminals #4-40, side exit with cartridge brushes (2) 1.355 in x 1.355 in x 1.500 in max - cartridge screw type N Pin type terminals with flush cartridge brushes (2) • Peak Torques: 12.0 oz-in Alnico magnet O (Not used) P (Not used) 20.0 oz-in Samarium Cobalt magnet Q Turret type terminals with flush (snap in) cartridge brushes (2) R Leads out the side with flush (snap in) cartridge brushes (2) 4.24 Cube Series S (Not used) • 0.750 in x 0.750 in x 0.750 in max Т (Not used) • Peak Torques: 2.7 oz-in Alnico magnet U 4 leaf springs, 2 pin terminals, 2 leads (2.7) oz-in Samarium Cobalt magnet V Pin type terminals with flush (snap in) cartridge brushes (4) W Leads out the side with flush (snap in) cartridge brushes (4) X 4 cartridge brushes, 2 pin terminals, 2 leads #2-64 screw terminals, 180° apart Z 4 leaf springs, 4 pin terminals TYPICAL APPLICATIONS Today, Moog is in the unique position to provide engineering and manufacturing expertise for all rotary components that share the • Avionics - cockpit instrumentation (altitude, gimbal's structure. Moog's fractional horsepower DC motors provide the torque for continuous rotation for scanning applications such latitude) and displays (indicators and instruments) as radar, missiles, seekers, aerial targets and target acquisition Robotic control systems systems while the slip ring assemblies pass the power and data Military targeting / fire control systems across the rotating interface. Our resolvers provide the positional Sighting systems feedback often within arc seconds of accuracy. Missiles These components can, of course, be provided separately Military actuators or be integrated. Integrated products typically share • Direct drive servo systems a common structure and bearing which reduces piece part count and system weight. Integration and test is performed Medical equipment at the factory providing a "plug and play" subsystem. Moog also provides complete actuator systems with control Integrated Motion Technology electronics. This integrated concept reduces the number of items that would otherwise have to be procured and stocked by the OEM.

In many gimballed systems for the military, aerospace and industrial market segments, rotary electromechanical components such as motors, resolvers and slip ring assemblies often find themselves sharing common envelopes and structures. For this reason, Moog has a unique niche in the marketplace by providing and integrating these traditional components into one assembly so the individual components have been optimized to work together.

SPECIFICATIONS ON TYPICAL CUBE MOTORS

The following tables presents a cross-section of Moog cube motor designs. Tooling charges may apply to new designs.

Part Number	Length	Peak Torque	Volts at Peak	Current at	Torque	Back EMF (V/rad/sec)	DC		Inertia (oz-in-sec2)	No Load	No Load	Starling	Weight
	inches (metric)	(oz-in) (Nm)	Torque (Volts)	Peak Torque (amps)	Constant (oz-in/amp)	x10E–2 (Nm/amp)	Resistance (Ohms)	Inductance (mH)	x10E-4 (KgCm2 x10E-4)	Speed (RPM)	Current (Ma)	Voltage (Volts)	(oz) (gm)
21105N-□□-03	1.06	7.5	26.0	1.7	5.3	3.74	15.0	6.0	1.3	6500	85	1.0	2.93
	26.9	.053	26.0	1.7	.037	3.74	15.0	6.0	.018	6500	85	1.0	83.06
21105A-□□-04	1.06	7.5	41.7	0.975	7.55	5.3	44.0	16.0	1.3	6500	60	0.75	2.93
	26.9	.053	41.7	0.975	.053	5.3	44.0	16.0	.018	6500	60	0.75	83.06
21105N-□□-08	1.06	8.6	13.0	3.3	2.6	1.8	3.9	1.3	1.3	6500	150	1.0	2.93
	26.9	.061	13.0	3.3	.018	1.8	3.9	1.3	.018	6500	150	1.0	83.06
21105N-□□-10	1.06	6.0	8.0	5.0	1.2	0.85	1.6	0.4	1.3	6500	225	1.0	2.93
	26.9	.042	8.0	5.0	.009	0.85	1.6	0.4	.018	6500	225	1.0	83.06
21105N-□□-12	1.06	6.5	26.0	1.7	4.6	3.25	15.0	6.0	1.3	7000	85	1.0	2.93
	26.9	.046	26.0	1.7	.033	3.25	15.0	6.0	.018	7000	85	1.0	83.06
21105N-□□-13	1.06	6.5	41.7	0.975	6.7	4.8	44.0	16.0	1.3	7000	60	1.0	2.93
	26.9	.046	41.7	0.975	.048	4.8	44.0	16.0	.018	7000	60	1.0	83.06
21605A-□□-14S	1.06	11.0 min.	20.5	2.95	3.8	2.68	7	3.3	1.3	7000	217	1.0	2.93
	26.9	.078	20.5	2.95	.027	2.68	7	3.3	.018	7000	217	1.0	83.06
21607A-□□-15S	1.06	12.0 min.	24	3.5	4.75	3.35	7.5	3.5	1.3	6500	90	0.75	2.93
	26.9	.85	24	3.5	.034	3.35	7.5	3.5	.018	6500	90	0.75	83.06
21607J-□□-16S	1.06	8.5	20	1.5	5.5	3.9	13	5	1.3	4600	100	1.5	2.93
	26.9	.060	20	1.5	.039	3.9	13	5	.018	4600	100	1.5	83.06
21607J-□□-19S	1.06	12.0	25.9	2.9	5.0	3.5	9	4	1.3	6800	60	1.0	2.93
	26.9	.085	25.9	2.9	.035	3.5	9	4	.018	6800	60	1.0	83.06
21605A-□□-20S	1.06	12.0	28	3.2	5.4	3.8	10.5	5	1.3	6700	60	0.75	2.93
	26.9	.085	28	3.2	.038	3.8	10.5	5	.018	6700	60	0.75	83.06
21105K-□□-22S	1.06	7.2	12	2.1	4.5	3.2	7	3.3	1.3	3400	60	1.0	2.93
	26.9	.051	12	2.1	.032	3.2	7	3.3	.018	3400	60	1.0	83.06
22613J-□□-01	0.812	3.6	26.0	0.6	6.0	4.2	43.0	12.0	0.65	5000	45	1.0	2.0
	20.6	.025	26.0	0.6	.042	4.2	43.0	12.0	.009	5000	45	1.0	56.70
22613M-□□-01	0.812	3.6	26.0	0.6	6.0	4.2	43.0	12.0	0.65	5000	45	1.5	2.0
	20.6	.025	26.0	0.6	.042	4.2	43.0	12.0	.009	5000	45	1.5	56.70
23101L-□□-01	1.50	10.0	26.0	2.1	4.8	3.4	12.0	5.0	2.2	5800	125	1.0	4.3
	38.1	.071	26.0	2.1	.034	3.4	12.0	5.0	.031	5800	125	1.0	121.9
23101L-□□-02	1.50	12.0	18.0	3.27	3.7	2.6	5.5	2.2	2.2	5500	175	1.0	4.3
	38.1	.085	18.0	3.27	.026	2.6	5.5	2.2	.031	5500	175	1.0	121.9
24618R-□□-04	0.75	1.7	15.0	0.58	3.7	2.6	26.0	8.5	0.35	5000	50	1.5	1.25
	19.1	.012	15.0	0.58	.026	2.6	26.0	8.5	.005	5000	50	1.5	35.44
24618N-□□-05	0.75	2.7	12.0	1.0	2.7	1.9	12		0.35	5725	50	1.0	1.25
	19.1	.019	12.0	1.0	.019	1.9	12		.005	5725	50	1.0	35.44
24618R-□□-09	0.75	1.0	6	0.75	1.35	0.95	8	1.4	0.35	6000	125	1.0	1.25
	19.1	.007	6	0.75	.010	0.95	8	1.4	.005	6000	125	1.0	35.44
24618V-□□-10	0.75	2.5	26	0.425	5.75	4.1	61		0.35	5500	30	1.0	1.25
	19.1	.018	26	0.425	.041	4.1	61	-	.005	5500	30	1.0	35.44
24618V-□□-11	0.75	1.5	15.0	0.555	2.7	1.9	22.5	-	0.35	6600	75	1.25	1.25
	19.1	.011	15.0	0.555	.019	1.9	22.5		.005	6600	75	1.25	35.44
24618V-□□-15	0.75	1.0	7.5	0.575	1.8	1.3	13	1.4	0.35	5000	70	0.75	1.25
	19.1	.007	7.5	0.575	.013	1.3	13	1.4	.005	5000	70	0.75	35.44

Part Number	Length	Peak Torque	Volts at Peak	Current at Peak	Torque Constant	Back EMF	Term. Res.	Term. Ind.	Rotor Inertia	Frictional Torque	Motor Constant	Weight		Pot. End-End Travel	Pot. Linearity
			Torque	Torque											
	(inches)	(ozin.)	(Volts)	(amp)	(oz.in./amp)	(V/Rad./s)	(Ohms)	(mH)	(oz.in.s²)	(oz.in.)	(oz.in./sq.rt.watts)	(oz.)	(Commutation)		
DC MT/POT															
AS-889-003	1.500	12.0	21.6	2.40	5.00	0.035	9.00	4.50	1.6E-04	0.30	1.67	4.0	Potentiometer	250°	Absolute +/50%
MT/RESOLVER															Transformation
AS-891-002	2.000	1.3	13.3	0.42	3.50	0.025	32.00	6.00	7.8E-06	0.20	0.62	3.2	Resolver	Accuracy < 6'	Ratio 0.454 +/- 5%
MT/POT/GHD														Gear Ratio	
AS-915-001	3.375	66.5	26.1	2.90	5.50	0.039	9.00	4.50	3.0E-04	3.50	1.83	6.0	None	4.84:1	Back Lash < 0.5°

CUBE MOTOR TYPICAL OUTLINES

MECHANICAL DIMENSIONS IN INCHES (MILLIMETERS)

B

21 SERIES (21105L- 00-08) Standard 1 inch cube motor with cartridge brushes and screw terminals 1.06 MAX (26.9) 1.02 (25.9) MAX TYP. Ø.5000/.4995 (Ø12.7/12.7) .075 (1.91) Fr +8 1 C t-H æ TWO THRU HOLES Ø.120 (Ø3.05) MIN, Ø.130 (Ø3.31) MAX LOCATED ON A 1.082 (27.0) B.C. BSC , Ø.010 (Ø0.254) C'SUNK TO .235 ±.010 (5.97 ±0.254) x 82° AT BOTH ENDS 1.355 (34.4) MAX TYP. 22 SERIES (22613R-HP-01 / D358) Short 1 inch cube motor with cartridge brushes and lead wires 1.07/1.04 MAX (27.2/26.4) .821 (20.8) MAX 1.02 (25.9) MAX TYP. .812 (20.6) MAX .627 (16.0) REF .075 (1.91) .220/.200 (5.59/5.08) A Ö Ó Ο \bigcirc 1.02 (25.9) MAX TYP. 45°/±2 \bigcirc \bigcirc 0 BLACK Ø.5000/.4995 (Ø12.7/12.7) Ø.105/.095 (Ø2.67/2.42) TWO #4 40 UNC 2B TAPPED HOLES EQUALLY SPACED ON A Ø1.062 (027.0) BOLT CIRCLE. MINIMUM DEPTH.250 (6.35), C'BORE TO Ø.125 (Ø3.18) X .060 (1.52) DEEP. Ø.1247/.1245 (Ø3.17/3.16) RED 23 SERIES (23101L- - - 02) Long 1 inch cube motor with cartridge brushes and screw terminals 1.50 MAX (38.1) 1.02 (25.9) MAX TYP. Ø.5000/.4995 (Ø12.7/12.7) .075 (1.91) E ÷

CUBE MOTOR OUTLINES

MILITARY / AEROSPACE RESOLVERS FOR POSITION, COMMUTATION, AND VELOCITY FEEDBACK

Resolvers provide accurate position and velocity feedback as well as commutation in precision equipment, without the structural or temperature restrictions imposed by other electronic feedback devices. They are resistant to the shock and vibration levels often encountered in military and aerospace applications.

These resolvers are available in standard sizes, or with custom modifications. Our engineering department is available for consultation to help tailor a resolver to fit your needs.

FEATURES

- 1, 2, 4, 8, 16, 32 and 36 speeds standard; others available
- 400 5,000 Hz frequency range standard; frequencies up to 20,000 Hz available
- High immunity to electrical noise
- Rugged design to meet demanding environments no glass discs or optics to fail
- Compact design
- Mounts directly to shaft and housing no coupling devices needed
- Brush or brushless designs
- High reliability long-life design; no bearings or electronics
- Custom modifications available

INTEGRATION CAPABILITIES

- Ideal for vertical integration with brushless motors and slip ring assemblies
- Commutation of brushless motors
- Feedback sensor for servo systems
- Compatible with R / D converters

TYPICAL APPLICATIONS

Where precise position indication is required to interface with resolver to digital converters.

- Target acquisition systems
- Gun trunnions
- Forward-Looking-Infra-Red (FLIR) systems
- Electro-optical systems
- Radar systems
- Missile seekers
- Motor commutation

MECHANICAL PARAMETERS AND SCHEMATICS OF RESOLVERS

TYPES OF RESOLVERS

Pancake Resolvers

Pancake resolvers are so named for their physical dimensions – they typically have a diameter that exceeds their axial length. Pancake resolvers are supplied as separate rotor and stator assemblies, which are then mounted directly in the user's system. They are

Figure A. Dimension Configuration for Single or Multispeed Unhoused Pancake Resolvers often supplied with a custom ring on the stator and hub on the rotor which facilitatemountingintheuser's system. This also improves performance in the operating temperature ranges typically found in military systems. Figure A shows a typical physical configuration for a pancake resolver with a ring and hub.

A pancake resolver can also be suppliedinamultispeedconfiguration. Multispeeds are mechanically and electrically similar to a standard pancake, but produce "N" cycles of electrical output for each mechanical revolution of the rotor. "N" is called the ratio or speed of the resolver. For example, an 8 speed resolver has one electrical output cycle in 360/8 = 45 degrees of mechanical rotation. The individual electrical cycles can be distinguished from each other by inserting a single speed in the same slots with

the multispeed, creating a multiple speed unit. Figures B and C below show typical wiring schematics for single speed and multispeed resolvers, respectively. Mounting diameters A and B and overall thickness C (refer to Figure A) as well as electrical parameters for a variety of units are tabulated on page 194.

A rotary transformer can be added to a pancake resolver so that all of the leads exit from the stationary element. Since the rotor is energized through this rotary transformer, slip rings and brushes are not required in the user's system. This type of resolver is called a brushless pancake resolver and is designated as "B/L" in the function column in the table on page 194. Figure E below shows a typical wiring schematic for a brushless resolver. Brushless resolvers often offer a less costly and more reliable alternative to resolvers that are energized through slip rings.

Housed Resolvers

A pancake resolver can be mounted in a housing and shaft configuration that includes a set of ball bearings. Usually, the resolver housing is hard-mounted to the stationary portion of the user's system and the resolver shaft is connected to the rotating portion through a torsionally rigid flexible connector such as a bellows coupler. A housed resolver such as this can also incorporate a rotary transformer. A typical outline for a housed. brushless resolver is shown in Figure D. Often, a housed resolver will be more accurate than an equivalentunhousedunitbecause the air gap of the resolver can be ground concentric with the bearing seats.

Figure D. Typical Outline for Housed Resolvers

Our engineering department is available to assist you in obtaining a mechanical configuration that will fit your system's requirements.

MILITARY / AEROSPACE RESOLVERS

						S	PECIF	ICATIO	ONS						
Part Number	Function	Primary	Speed	Input	Max Error	Trans.	Phase	Max	Pin	Imp	edances	Unit Dir	nensions (S	ee Figure A)	Notes
		Winding		(Volts/Hz)	(Accuracy) (+/-)	Ratio	Shift (DEG)	Null V (mV)	(mW)	Zpo	Zso	A OD	B	C Overall Width	
SSH-12-M-1	RES RX	R	1X	10/3200	6'	1.0	8	20	46	200+j630	330+j830	1.187	0.563	0.328	4
SMH-12-A-3	RES RX	R	3X	5/4800	2'	0.38	30	15	64	111+j198	33+j60.5	1.187	0.563	0.365	4
SMH-14-A-1	RES RX	R	4X	26 / 500	6'	0.454	32	15	60	320 + j640	620 + j440	1.31	0.187	0.465	3
SMH-16-J-1	RES RX	R	2X	26 / 400	3'	0.454	40	20	814	350 + j410	157 + j165	1.56	0.81	0.38	3
SMH-17-B-3	RES RX	R	4X	26 / 500	6'	0.454	32	15	60	320 + j640	620 + j440	1.66	0.156	0.54	3
SSH-23-S-1	RES RX	S	1X	26 / 400	10'	0.454	30	30	225	900 + j1380	320 + j480	2.29	0.32	0.408	3
SMH-32-D-1	RES RX	R	16X	7 / 12500	60"	0.286	4	30	75	660	60 + j110	2.850	1.745	0.530	3
SMH-30-B-1	RES RX	R	16X	15 / 1200	30"	0.5	23	15	370	100 + j225	540 + j475	2.94	1.5	0.708	3
SMH-30-C-1	RES RX	R	8X	15 / 1200	1'	0.5	15	20	125	120 + j450	600 + j575	2.94	1.5	0.708	3
SMH-30-E-1	RES RX	S	16X	26 / 1440	30"	0.454	45	30	240	502 + j1098	935 + j1398	2.960	0.740	0.550	3
SMH-34-G-1	RES RX	S	8X	26 / 1440	30"	0.454	17.5	30	460	155 + j455	300 + j200	3.34	1.075	0.55	3
SMH-34-C-1	RES RX	R	8X	26 / 2400	2'	0.454	42	20	1200	206 + j358		3.39	0.875	0.914	3
SSJH-36-B-3/	RES RX	R	1X and	26 / 400	15'	0.454	8	30	530	225 + j480	750 + j225	3.57	2	0.6	1, 3
P195			16X		1'	0.454	25	20			460 + j460				
SSJH-36-K-1	RES RX	R	1X and	26 / 2400	10'	0.454	4	20	40	4000 + j8800		3.58	1.31	1.11	3
			8X	26 / 2400	1'	0.454	13	20	140	200 + j890					
SMH-37-A-3	RES RX	R	8X	11.8 / 400	1'	0.4	27	10	60	650 + j1270		3.61	0.54	0.61	3
SMH-37-J-1	RES RX	R	16X	26 / 400	30"	0.454	29	25	600	330 + j540		3.61	0.728	0.65	3
SSJH-37-J-4	RES RX	R	1X and	8 / 2400	60'	0.25	2.5	15	150	180 + j306	81 + j48	3.610	.728	.650	1, 3
			32X		20"	0.25	35	5			150 + j172				
SMH-43-E-1	RES RX	S	16X	7 / 12500	60"	0.286	2.5	30	54	51 + j206	51 + 250 MΩ	3.695	2.405	0.530	3
SSBH-40-C-1	B/L R RX	S	1X	7 / 1200	6'	0.683	3	15	65	180 + j320	313 + j487	3.95	2	1	3
SSJH-43-C-1	RES RX	R	1X and	7 / 4500	15'	0.454	0	30	16	122 + j686	530 + j545	4.245	3.175	0.545	4
			16X	7 / 4500	60"	0.454	4.5	15							
SMVH-44-A-2	RES VR	S	2X	12 / 5000	2°	0.275	12	40	3125	32 + j120	42 + j245	4.4	0.945	0.65	3
SSJH-46-C-1	RES RX	R	1X and	7 / 800	10'	0.357	10	6	3	1650 + j5040	295 + j725	4.52	2.08	0.578	3
		-	16X	7/800	30"	0.345	35	4	225	61 + j97	80 + j39				
SSH-50-B-1	RES RX	R	1X	26/400	3'	0.454	3	25	120	1435 + j2530	360 + j565	4.99	3.456	0.7	4
SSJH-50-B-3	RES RX	R	1X and	26 / 2600	15'	0.454	4	25	282	162 + j602	278 + j295	4.994	3.456	0.750	4
0141150.4.4	DE0 DV		32X	26/2600	20"	0.454	11.5	25	50	700 14400	265 + j1060	5.00	0.005	0.055	-
SMH-53-A-1	RES RX	R	2X	18/400	5	0.656	45	18	50	760 + j1400	780 + 3855	5.26	2.385	0.855	3
SSJH-60-A-1	RESRX	ĸ	1X and	26/400	10	0.454	10	25	670	145 + J352		6	3.455	1	1, 4
		D	328	445 / 400	20	0.454	23	30	220	7070 . :47000		-	2.455	4	4
55JH-00-D-1	RES RA	ĸ		115/400	20	0.700	5	200	330	7978 + 117080	5100 + J12228	0	3.455		4
00 111 02 A 4			16X	115 / 400	40"	0.783	18	200	3,200	560 + j1668	2216 + j2380	0.05	5.04	0.01	4.4
35JH-03-A-1	KE2 KX	K		20/400	10 60"	0.454	21	30	15/0	152 + J203	/ 30 + j255	0.25	5.01	0.01	1,4
0011 70 5 0	0)(0) (0)(16X	06 / 400	00"	0.454	30	15	500	0400 . :0005	400 + j250	7.75	4.07	1 00	2
SGH-/8-8-2	SYNCX	R		20/400	4	0.454	20	30	500	2480 + J3285	720 + j885	1.15	4.27	1.00	3
36H-/8-6-2	STINUX	R		20 / 401	4	0.454	20	30	500	2480 + J3285	720 + j885	1.15	4.27	1.00	3
5GH-/8-D-2	SYNCX	K	1X	26 / 402	4	0.454	20	30	500	2480 + j3285	/20 + j885	1./5	4.27	1.88	3
55JH-98-A-1	RES RX	K	1X and	26 / 400	10	0.450	/	30	120	2080 + j2/00	535 + J/50	9.750	6.000	1.000	3
	1		16X	26 / 400	60"	0.450	9.3	30	180	130 + j690	265 + j280				

Abbreviations:

Function: RES RX = Resolver Transmitter SYN CX = Synchro Transmitter B/L R RX = Brushless Resolver Transmitter

Winding: R = Rotor

S = Stator

Accuracy: '= arc minutes, "= arc seconds Higher accuracy units available, please call factory.

Impedances: Zpo = Impedance of the primary with the secondary open Zso = Impedance of the secondary with the primary open

Other: ---- = please consult factory

Notes:

1. Primary windings of both speeds are in parallel.

2. Rotation limited to ±30° due to connector.

3. These dimensions refer to the resolver with mounting rings and hubs. We can alter or delete the mounting rings and hubs as needed to meet your requirements. Tooling charges may apply.

4. These dimensions refer to resolver without mounting rings and hubs. We can add mounting rings and hubs as required to meet your requirements. Tooling charges may apply.

INTEGRATED MECHANISMS

Moog's unique product offering of motion technology (slip rings, motors, resolvers, drives and actuators) and fiber optic and multiplexing products provides the capital assets and engineering capabilities to design, manufacture and integrate these discrete products into an integrated gimbaled mechanism. In today's business environment where many corporate strategies are to focus on core competencies, let Moog take the design and integration of these discrete components into fully functional and tested subassemblies that are ready for installation into the end-item assembly. Should your strategy be to outsource these assemblies on a build-to-print or buildto-spec basis, we are ready to apply our resources so you can achieve those goals too.

Our integrated assemblies range from simple combinations of motors and resolvers to sophisticated electro-mechanical assemblies including the slip ring, brake, drive electronics, fiber optic rotary joints, hydraulic and pneumatic swivels and RF rotary joints. We also offer and provide fully integrated servo and utility actuators complete with precision gearing, clutches, brakes and closed-loop control electronics.

Our business strategy is simple, let Moog focus on what we do best so our customer can focus on what they do best. This strategy provides our customers with many measurable benefits.

Optimized systems that operate at peak performance

Tolerance stack up can rob magnetic and electromechanical designs of their intended performance capabilities. Maintaining air gap and mechanical tolerances are critical in precision electromechanical mechanisms. Even though the discrete components fall within specified tolerances, tolerance stack up may result in system performance problems. The end result is costly system redesign, component matching or assembly shimming for each item produced.

When a single manufacturer of these magnetic and electromechanical components has this responsibility, these issues are mitigated by careful attention to processing of the discrete components, thus ensuring a final assembly, that is electrically and mechanically aligned and fully tested.

System design can often be verified when a single manufacturer is able to conduct trade studies of the various components. Within a given mechanical envelop, space can be minimized, total component count reduced and structures sculpted with an end result of increased MTBF and reduced end-item weight.

Resource Optimization

This approach ensures system engineers are focused on the system, not its components. By focusing engineering resources, program risks are minimized, schedules maintained and costs reduced. Additionally, overhead costs are reduced by eliminating the manpower of soliciting multiple contractors and resulting contract administration, multiple incoming inspections of discreet components and the resulting expenses of pulling and distributing component kits. Additional program costs are saved by eliminating the need of holding multiple design reviews at different locations, multiple qualification tests and the review and approval of their related documents.

Accountability

You are assured that all system components are integrated properly and a fully tested end-item assembly is delivered. And, in the rare case that a technical problem should occur, you know exactly who to call for immediate help.

EXAMPLE OF INTEGRATED MOTION TECHNOLOGY

Primary Flight Control Surface Drive Assembly

INTEGRATED MECHANISMS

With all marine, military and aerospace programs, a heritage of program success is essential. Moog has successfully provided integrated mechanisms to many mission critical programs including the following:

MARINE MARKET							
Platform	Integrated Assembly	Status					
Floating Production Storage and Offloading Vessel (FPSO)	Slip ring, FORJ, HUS and OEO converter Cables and junction boxes	Production					
Remotely Operated Vehicles	Multiplexer, slip ring and FORJ	Production					
Seismic Streamer	Slip ring and FRU Slip ring and FORJ	Production Production					
Single Point Mooring System CALM Buoys	Slip ring, FORJ and FRU	Production					

MILITARY MARKET							
Platform	Integrated Assembly	Status					
Helicopter	Slip ring, resolver and RF rotary joint	Production					
Helicopter	Twist cap and resolver	EMD					
Rotorcraft	Slip ring, resolver and monopole sensor	Production					
Armored Vehicle	Slip ring, resolver, R-to-D network, hydraulic and pneumatic swivel, and power distribution	Production					
Armored Vehicle	Slip ring, encoder and pneumatic swivel	Production					
Radar	Slip ring, motor, resolver, motor control and drive electronics, and 2-channel FORJ	EMD					
Radar	Slip ring, digital resolver, motor and bull-gear	EMD					
Radar	Servo actuator, motor and drive electronics	Production					
Radar	Slip ring, FORJ and FRU	Production					
Naval Towed Arrays	Slip ring, FORJ and FRU	Production					

SPACE MARKET							
Platform	Integrated Assembly	Status					
Solar Array Drive	Slip ring, motor, harmonic drive and potentiometer	Flight					
Solar Array Drive	Slip ring, motor and resolver	To-be-flown					
Satellite Mechanism	Motor, ball screw and balanced weight	Flight					

INDUSTRIAL MARKET

Platform	Integrated Assembly	Status		
Rotary Piston Machining Centre	Mux, slip ring, FORJ and FRU	Prototype		
Coal Stacker, Reclaimer	Slip ring, FORJ, FRU and encoder	Production		

EXAMPLE OF INTEGRATED MOTION TECHNOLOGY

Moog looks forward to applying our design and manufacturing resources to your program's integrated assembly needs.
DEFENSE PRODUCTS

ROTARY JOINTS AND SLIP RINGS

These high performance products are used in systems that require unrestrained, continuous rotation while transmitting power, data and media from a stationary device to a rotating structure. High bandwidth options include Ethernet, high definition video and other industry standard formats. Moog also has solutions including fiber optic rotary joints, fluid rotary unions and position sensors.

DIRECT DRIVE DC TORQUE MOTORS AND ALTERNATORS

Frameless torque motors are used in defense applications that require high power density and quick accelerations. The motors are optimized to minimize input power for maximum efficiency. Alternators in the same mechanical configuration can be used for mobile power generation.

RESOLVERS

Moog offers rugged resolvers that provide accurate positioning and velocity feedback, as well as commutation of brushless motors. These models withstand the shock and vibration levels often encountered in aerospace and military applications. They are used for vertical integration with motors and slip ring assemblies.

ACTUATORS

Multi-purpose electromechanical actuators are available in both rotary and linear configurations and are standard building blocks in a variety of systems. Some of our actuators integrate servo electronics. These actuators are used on air, ground and unmanned applications.

HIGH SPEED DATA COMMUNICATIONS

Moog provides innovative components and communication sub-systems for both copper and optical fiber based systems used in harsh environments. Moog meets the demanding high speed and secure networking equipment requirements of todays modern defense systems. The product range includes electro-optical transceivers, link extenders, Ethernet media converters and switches, data aggregators and multiplexer/de-multiplexer solutions.

INTEGRATED MOTION ASSEMBLIES

Our higher level solutions range from simple combinations of individual products to sophisticated electromechanical assemblies including the motor, drive electronics, slip ring, fiber optic rotary joint, fluid / pneumatic swivel and RF rotary joint. Moog's single-axis gimbal stage supports most payloads, and all the rotary components are integrated into one assembly. This design reduces set-up time and simplifies the installation process.

NOTES

NOTES

AMERICAS

1501 North Main Street, Blacksburg, Virginia 24060 +1 (540) 552 3011 poweranddata@moog.com www.moog.com EUROPE

30 Suttons Business Park, Reading Berkshire, RG6 1AW +44 (0) 118 966 6044 poweranddata@moog.com www.moog.com

Products listed herein are subject to U.S. Export Regulations and may require export licensing. Contact Moog to obtain specific export control requirements.