

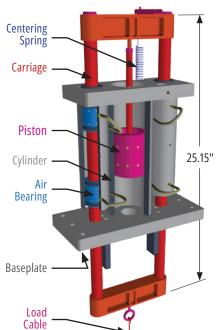
GRAVITY OFFLOADERS FOR ZERO GRAVITY SIMULATION

Gravity influences structures differently on orbit, but those structures must be integrated and validated on the ground. A deployable spacecraft appendage is often mass-optimized for zero gravity performance but unable to support its own weight on Earth. Moog's no-sag gravity offload systems provide low frequency suspension, with modes as low as 0.1 Hz, enabling you to test and validate fixed and moving space structures before flight. All

other gravity offloading methods suffer from significant limitations that prevent them from accurately simulating unconstrained (free-free) boundary conditions.

KEY FEATURES

- Wide Payload Range
- Very Low Stiffness
- Zero Static Sag
- Low Added Mass
- Frictionless
- Vibration Modes Above Test Range



GRAVITY OFFLOADERS

Moog's gravity offloaders, based on frictionless air bearing and air piston technology, provide high fidelity simulation of the space environment. They offer a wide payload range, very low stiffness, zero static deflection, and zero friction while conventional offloader technologies suffer from suspension stiffness, added mass, friction, or vibrational modes of the suspension devices, themselves. Typical systems combine three to five identical offloader devices although this quantity can be much greater for large, flexible test articles.

APPLICATIONS

- Dynamic testing of space structures without changing free-free vibration modes
- Investigate effects of exercise on human health in space
- Assembly or alignment of precision structures or optical systems
- Need to apply a large force through very low stiffness such as pre-loading a test article
- Vibration isolation for airborne optics

PERFORMANCE				
Model		AGM	AGM-A	
Payload ca	pacity	5 – 1500 lbs	10 – 1500 lbs	
Typical vertical suspension frequency		0.1 – 0.2 Hz	0.1 – 0.2 Hz	
Vertical st	roke	0.5 to 18"	0.5 to 18"	
Moving n	nass	6 lbs.	9 lbs. (w/o mass canceling) 1.4 lbs. (w/ mass canceling)	
Air spring stiffness		Payload-dependent	Payload-dependent	
Frictio	n	<0.005% of payload weight	<0.005% of payload weight	
Dimensions	(LWH)	12.0" x 5.5" x 27.8"	12.5" x 7.5" x 28.6"	
Air consumption at	: max payload	1.5 SCFM	1.8 SCFM	
Air supply p	ressure	20 – 140 psig	20 – 140 psig	
Electrical p	oower	0.5A @ 120 VAC (w/ optional displacement sensor)	0.5A @ 120 VAC	
Electronics and software		None	Control software and electronics for active force trim control	

Moog has built and delivered well over 100 gravity offload devices of at least 10 distinct designs over multiple decades.

AVAILABLE OPTIONS

- Active load leveling
- Vacuum compatible
- Mass cancellation
- Support weight from above or below
- Custom stroke or payload mass

WALKING GRAVITY OFFLOADERS

Moving or deployable structures can be gravity offloaded with a "walking" version of our zero gravity suspension devices. This fully integrated solution utilizes closed loop horizontal payload tracking ability to follow a payload translating under its own power in all three directions. Tip-tilt sensors on the payload attachment cable allow the offloader position to be maintained directly over the top of the payload attachment point to minimize side loads imparted into the test article.

APPLICATIONS

- Solar panel deployment testing
- Deployable booms or ion thrusters
- Torque motor characterization in space environment
- Robotic arm testing
- Walking human subjects

PERFORMANCE				
Model	WAGM-S	WAGM-L		
Payload capacity	5 – 200 lbs	10 – 275 lbs		
Typical vertical suspension frequency	0.1 – 0.2 Hz	0.1 – 0.2 Hz		
Total range of motion (XYZ)	78" x 51" x 69"	164" x 95" x 54"		
Moving mass	1 lbs	5 lbs		
Air spring stiffness	Payload-dependent	Payload-dependent		
Vertical force error	0.1 – 0.3% of payload weight typical	0.1 – 0.5% of payload weight typical		
Horizontal force error	0.1 – 0.5% of payload weight typical	0.1 – 0.5% of payload weight typical		
Air consumption at max payload	1.5 SCFM	1.8 SCFM		
Air supply pressure	20 – 120 psig	20 – 120 psig		
Electrical power	10A @ 120 VAC	20A @ 208 VAC 30 5A @ 120 VAC		
Electronics and software	Control software and electronics for active horizontal tracking	Control software and electronics for active tracking in all axes		

Note: These configurations are typical examples. Numerous variations and options are possible and requests for custom versions are welcome

WHAT MAKES MOOG'S GRAVITY OFFLOADERS SUPERIOR?

An ideal gravity offload system has the following features: wide payload range, no vertical stiffness, no static sag, no added moving mass, no friction, and no added vibration modes within the frequency range of interest. Moog's proprietary pneumatic suspension devices excel in all six of these categories while alternative offloader approaches suffer significantly in one or more areas and corrupt measurements of low frequency modes.

PERFORMANCE				
Alternative Offloader Technology	Limitations			
Water huggary customs	High viscous damping			
Water buoyancy systems	Excessive vertical stiffness			
Air buoyancy systems (e.g. helium)	Adds minimum of 16% of payload mass			
Overhead his bearing or hall bearing dellies	Artificially constrains vertical degree of freedom			
Overhead air bearing or ball bearing dollies	Imposes artificial lateral drag forces			
Suspension cable systems (e.g. cable in series with linear spring)	Very low stiffness required of spring introduces large static sag			
Suspension came systems (e.g. came in series with linear spring)	Only practical for vertical displacements on the order of inches, not adequate for deployment testing			
Cables with pullies and offload weights	Friction from cable-pulley assemblies introduces non-linearities			
Capies with pulles and official weights	Tuning can be challenging			
Bungee cords	Static sag of 82 ft required for 0.1 Hz system			
Air hearing tables	Does not support vertical motions			
Air bearing tables	Significantly restricts angular motions			

